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I 

ABSTRACT 

When a structure is subjected to an explosion, it will have a response that differs from 

the one that arises from a static load. Engineers are used to design for static loads but 

the common knowledge of how to design for explosions is weak. There are guidelines 

for how to design for explosions with simplified methods but they are partly outdated 

and the explanation of how they are derived is vague. This Master thesis compiles 

some of the most important guidelines and explains the underlying theory. In order to 

understand the structural response one must first study basic theory of explosions, 

different material behaviours and basic dynamics, which are also presented in the 

thesis. 

A structure can be simplified by transformation into a single degree of freedom-

system (SDOF-system), and the reliability of such an SDOF-system is evaluated 

within this thesis. The SDOF-system is created by using a system point where the 

maximum displacement will occur, and it is compared to hand calculations for the 

maximum values and to non-linear finite element analyses. The SDOF-model assumes 

a specific deflection shape which is taken into account by using certain transformation 

factors. The simplified methods of calculating the structural response are presented in 

general, but the examples are made for reinforced concrete beams as these, due to 

their high mass and ductile behaviour, often are used as protection from explosions. 

Since no actual tests could be performed to collect empirical data about the response, 

FE-analyses are performed with the finite element software ADINA and even for a 

complex material such as concrete these analyses are assumed to represent the actual 

response of a structure. 

In order to speed up the analyses, adequate simplifications of the motion can be 

described with mode superposition, and the effectiveness of these simplifications is 

shown in the thesis. When the mode superposition-analysis is made with only one 

mode, the results can verify the accuracy of the SDOF-model. 

When designing structures it is important that the calculations are on the safe side to 

minimize the risk of damage and above all, failure, and therefore damping is often 

neglected as it is both easier to calculate without it and the results will be on the safe 

side. However, in order to get more accurate results the damping should also be 

included and therefore different approaches for this are described. 

For impulse loads the moments near the supports are initially larger than for a static 

load which could pose a problem when the reinforcement is shortened in these areas. 

In this Master thesis the response for curtailed concrete beams is studied. 

 

Key words: Explosion, impulse load, SDOF, FE-analysis, dynamic response, 

reinforced concrete, equivalent static load, damping, mode superposition, 

curtailment. 
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SAMMANFATTNING 

När en struktur utsätts för en explosion kommer den ha en respons som skiljer sig från 

den som uppstår från en statisk last. Ingenjörer är vana vid att dimensionera för 

statiska laster, men den allmänna kunskapen om hur man dimensionerar vid 

explosioner är dålig. Det finns riktlinjer för hur man dimensionerar för explosioner 

med förenklade metoder, men de är delvis utdaterade och förklaringen till hur de är 

härledda är oklar. Det här examensarbetet sammanställer några av de viktigaste 

riktlinjerna och förklarar den underliggande teorin. För att kunna förstå den 

strukturella responsen måste man först studera grundläggande teori om explosioner, 

olika materialuppförande och grundläggande dynamik, som också presenteras i 

rapporten. 

En struktur kan förenklas genom att transformeras till ett enfrihetsgradssystem 

(SDOF-system), och SDOF-systemets tillförlitlighet utvärderas i denna rapport. 

SDOF-systemet skapas genom att använda en systempunkt där den maximala 

förskjutningen kommer att uppstå, och jämförs med handberäkningar för maximala 

värden och med olinjära finita element-analyser. SDOF-modellen antar en specifik 

utböjningsform som anpassas med hjälp av specifika transformationsfaktorer. De 

förenklade metoderna för att beräkna strukturell respons presenteras generellt, men 

exemplen är gjorda för armerade betongbalkar eftersom dessa ofta, på grund av deras 

höga massa och duktila beteende, används som skydd för explosioner. Eftersom inga 

riktiga test kunde utföras för att samla empirisk data om responsen är FE-analyserna 

utförda med det finita element-programmet ADINA och även för ett komplext 

material såsom betong antas dessa analyser representera den verkliga responsen för en 

struktur. 

För att snabba upp analyserna kan tillräckliga förenklingar beskrivas med 

modsuperposition, och effektiviteten av dessa förenklingar visas i rapporten. När 

sedan modsuperpositionsanalysen utförs med endast en mod kan precisionen av 

SDOF-modellen bekräftas. 

När man dimensionerar strukturer är det viktigt att beräkningarna är på säkra sidan för 

att minimera risk för skada och framförallt brott, och därför brukar dämpningen ofta 

bortses ifrån eftersom det är både enklare att räkna utan den och värdena kommer bli 

på den säkra sidan. För att kunna få mer noggranna resultat borde dämpningen också 

vara inkluderad och därför beskrivs olika tillvägagångssätt för detta. 

För impulslaster är momenten nära stöd inledningsvis större än för en statisk last 

vilket skulle kunna innebära ett problem när armeringen är avkortad i dessa områden. 

I det här examensarbetet studeras responsen för avkortade betongbalkar. 

 

Nyckelord: Explosion, impulslast, SDOF, FE-analys, dynamisk respons, armerad 

betong, ekvivalent statisk last, dämpning, modsuperposition, avkortning 
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1 Introduction 

1.1 Background 

Explosions are extreme loads that need to be considered in the design of structures for 

various applications. Except from apparent cases, such as military installations and 

civil defence shelters, design with regard to explosions is required for instance in the 

processing industry and for tunnels. In a world where the common knowledge of how 

to develop bombs and the level of threat from terrorist attacks grow bigger, it is also 

of interest to make sure that potential targets of terrorist attacks can withstand an 

explosion. Stockholm, December 2010, and Oslo, July 2011, are just two examples of 

recent events where terrorist attacks have involved explosions in city environment. 

It is also necessary to be able to analyse a structure subjected to an accidental 

explosion. A structure subjected to such an accident may very well be thinner than 

and not at all as strong as a structure designed to withstand an explosion. Whatever 

the cause might be and the strength of a structure the devastation can be considerable. 

Today, the knowledge of how to design buildings to withstand the effect of explosions 

and other impact loads is limited. The Swedish Fortification Agency (in Swedish; 

Fortifikationsverket) used to be the ones in Sweden with the most experience with 

regard to explosions, and they produced handbooks that are to be used when 

designing but they are difficult to follow and understand if one is not well-read in the 

subject. The standards of how to design with regard to explosions are far from perfect 

and therefore MSB (Myndigheten för Samhällsskydd och Beredskap) has for many 

years been working to increase the knowledge within the field of physical protection. 

Their goal is also to inform and enlighten today’s engineers and increase their 

understanding of explosions. The engineers of this decade need to become more 

familiar with dynamic and especially impulse loaded structures. 

This project is a continuation of four previous Master theses carried out by 

Nyström (2006), Ek and Mattsson (2009), Augustsson and Härenstam (2010) and 

Andersson and Karlsson (2012), in which the behaviour of concrete beams and slabs 

due to impulse loads were studied.  

 

1.2 Aim 

The aim of this Master thesis is to put together information about available design 

approaches for impact loading on concrete structures. It will be a complement to 

previous Master theses in this field. 

Since the response for a structure subjected to a dynamic load differs from that of a 

static load, one objective is to investigate if the moment is, at any time, too high 

during the dynamic loading. 

The damping of the structure will also be an important aspect of this Master thesis. 

Will the damping have a great impact on the results? When neglecting the damping 

one will obtain results on the safe side but when a more detailed analysis is conducted 

the damping could very well be important. 

An objective is to improve the SDOF-model so it can be more reliable. Often the 

damping has been neglected but when it is included in the SDOF-analysis the 

transformation factor for the damping needs to be determined. 
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Curtailment of the reinforcement (shortened reinforcement) will also be investigated. 

Structures intended to withstand explosions should be carried out with no 

reinforcement curtailment. However, this is not necessarily the case for a civil 

building. Hence, what will happen when the explosion hits a civil building? Will the 

moment capacity be sufficient to carry this kind of load? 

 

1.3 Method 

A literature study was made mainly from reports and previous Master theses in the 

subject to be able to compile existing knowledge and to explain the underlying theory 

of explosions, material responses, dynamics and transformation of a structure to an 

SDOF-system. 

An SDOF-model was made in Matlab for calculating the displacements, moments, 

energies and internal resistance for an arbitrary beam. The results for a certain studied 

beam were compared to the maximum values from hand calculations based on a 

characteristic impulse and a static equivalent load. This was done for a linear elastic, 

ideal plastic and elasto-plastic material response. 

Because there were no possibilities in actually testing the studied beam and 

comparing the theoretical results to collected empirical data, non-linear FE-analyses 

were made with the FEM software ADINA (2011), which were assumed to represent 

the true behaviour.  

The beam was modelled with 30 two-dimensional beam elements, which means that 

there were limitations to the accuracy of the results, so therefore they have been 

critically evaluated. 

 

1.4 Limitations 

No other material than reinforced concrete was analysed in this Master thesis. 

However, the methods can very well be used for different materials with certain 

changes. The material response is approximated with a linear elastic response, a 

plastic response and an elasto-plastic response. These material responses have 

previously been shown to be good approximations for this kind of analysis. 

When the energy is calculated in the SDOF-model the transformation factors used 

does not vary in time which. 

This Master thesis does not cover any effects of shear as the time was limited and 

there were other subjects of more interest. The shear force has also been studied 

thoroughly in previous Master thesis by Andersson and Karlsson (2012). The analyses 

are limited to simply supported beams without initial strain/stress and no torsion is 

regarded. 

The loading is chosen as an impulse load that can be interpreted as an explosion, 

where the explosion is limited to a detonation, which means that explosions of gas 

clouds are left out. Only the primary effects (shock waves) of explosions will be 

studied, which means no regard is taken to shrapnel or nearby buildings falling. 
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1.5 Outline of the report 

The report is divided into Background theory (Chapter 2), Structural response of a 

concrete beam (Chapter 3), Initial analyses and verification of the modelling 

(Chapter 4), Mode superposition and damping (Chapter 5),   
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Curtailment (Chapter 0) and Final remarks (Chapter 7). 

Chapter 2 provides an introduction to explosions, material responses and basic 

dynamics needed to explain the results in upcoming sections. The method for 

transforming a real structure into a single degree of freedom-system is also presented. 

Chapter 3 is the introduction to the reinforced concrete beam mainly studied in this 

Master thesis. The properties and cross-section for the beam is shown along with 

different load cases, and simple hand calculations for displacements, moments and 

energies are made. It is also covered how the beam is modelled using the finite 

element method, which is used for further analysis of the beam. 

Chapter 4 shows the results of the finite element analysis for different material 

responses in terms of displacement, moment and energy compared to the single 

degree of freedom analysis and hand calculations made in the previous section. This 

section is important for the understanding of the structural response due to an 

explosion. 

Chapter 5 describes how to simplify the dynamic analysis of a structure by only using 

the necessary modes of vibration. The effect of damping is regarded to present the 

importance of such. 

Chapter 0 studies the possibilities of curtailment of concrete beams when subjected to 

impact loading. This is investigated to determine whether problems will arise due to 

the early moment development near the supports. 

Chapter 7 concludes the Master thesis and gives recommendations for further studies 

within this field. 
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2 Background theory 

In order to understand as much as possible of this Master thesis, basic background 

theory is provided. The background theory will not cover everything and is often 

merely an introduction of different subjects. The reader is referred to other given 

literature for more information on the subjects. Since this Master thesis will deal with 

structures exposed to explosions the reader needs to be familiar with the effects of an 

explosion. It is also necessary that the reader understands how different materials 

behave when loaded. The statics and dynamics are also important subjects needed to 

be familiar with. In addition to this, an introduction of the SDOF-system is made. 

 

2.1 Explosions 

Explosions give rise to completely different loads compared to the more often used 

static loads. Today’s engineers are more used to work with static loads but it is 

necessary to study the dynamic response from explosions. Some basic theories in the 

field of explosions will be presented and the reader is referred to Johansson and 

Laine (2007) for more comprehensive information. 

 

2.1.1 What is an explosion? 

An explosion is a sudden release of energy with a related volume expansion. The 

explosion will lead to an increase of light and temperature but above all a high 

increase of pressure. For an explosion in midair the pressure will create a pressure 

wave which will advance in a spherical motion originating from the point of source, 

see Figure 2.1. The pressure will decrease with increasing distance from the source, 

and hence, the distance is of utmost importance when regarding explosions. The time 

it takes for the pressure wave to reach the object is referred to as arrival time, ta, and is 

a way to relate the distance from the explosion to a certain object. 

 

 
Explosion centre 

Pressure decreases further 

away from the centre 

 

Figure 2.1. An illustration of how the energy propagates outwards from the source 

of the explosion. 

An explosion can be idealized with two phases, one positive and one negative phase. 

The ordinary atmospheric pressure, which is referred to as ambient air pressure P0, is 

at a temperature of 15°C approximately 101,3 kPa. The positive phase is when the 
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pressure is increased to a pressure higher than P0. Due to the pressure wave the air 

will move outwards creating a partial vacuum behind it, lack of air, which is referred 

to as the negative phase. The pressure is here lower than the ambient air, and thus 

perceived as a negative pressure. This development can be described with a pressure-

time relationship, as schematically shown in Figure 2.2. The overpressure in the 

positive phase is considerably higher than in the negative phase. Further, the duration 

in the former is shorter than in the latter, resulting in an impulse of the negative phase 

that is somewhat larger than in the positive phase, approximately ten percent. 

According to Johansson and Laine (2007) the pressure-time relationship is often 

simplified with a linear decreasing pressure and the negative phase neglected due to 

its minor influence, see Figure 2.3. 
 

Pressure 

Time 

Negative pressure 

Positive pressure 

S
h

o
ck

 f
ro

n
t 

P0 

ta  

Figure 2.2. An idealised shock wave from an explosion. The high amplitude positive 

phase is followed by a longer negative phase with lower amplitude. 
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Figure 2.3 A simplified shockwave assumes linearly decreasing pressure and 

neglects the negative phase. 
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When looking at blast loads it is of interest to compare the load velocity for different 

kinds of loading. In Figure 2.4 a comparison has been made between different types 

of load cases. The reader can see that the blast load is 10
7
-10

8
 faster than a static load. 

 

 

1 0.1 0.01 0.001 10 100 1000 10
4
 10

5
 10

6
 10

7
 10

8
 

Earthquake Static Creep Impact Blast load 

 

Figure 2.4 Difference in load velocity between different types of loading, the values 

are obtained in relation to static load. 

The ignition of an explosive is usually divided into high and low degree of explosion. 

The higher degree of explosion is referred to as detonation and is the type of 

explosion used in this Master thesis. A detonation will occur when the ignition of the 

source of explosion occurs in supersonic speed, i.e. velocity above speed of sound, 

which results in a high degree of explosion due to the very fast development. This is 

the case for e.g. TNT and ANFO, where TNT is the commonly known explosive, 

Trinitrotoluene, which is used as a standard measure of strength of bombs and other 

explosives. ANFO is a worldwide industrial bulk explosive which consist of mainly 

ammonium nitrate and less than 10 percent fuel oil. Since ANFO is both low in cost 

and easy to mix it is widely used in civil explosions, such as mining and demolition, 

even though it lacks in water resistance and performance in small spaces and is less 

explosive. Because the ingredients to ANFO are easy to acquire it has also been used 

in several terrorist attacks. However, the term is often used loosely in media in 

describing IEDs, improvised explosive devices, in cases of fertilizer bombs. For 

instance, the bomb used in the Oslo bombing on July 22, 2011 was a 950 kg fertilizer 

bomb of type ANNM, ammonium nitrate and nitro methane, which increases 

demolition power 10-30 percent over plain ANFO, according to Bloomberg (2011). 

The other alternative for an explosion is referred to as deflagration. This is a low 

degree of explosion because the ignition is of subsonic nature, velocity below speed 

of sound. An example of deflagration is the ignition of a gas cloud. 

 

2.1.2 Effects of explosions 

There are certain concepts that the reader needs to be familiar with to understand the 

variation in magnitude and duration for a single explosion. A simplified case can be 

referred to with four basic concepts which are reflection, mirroring, confinement and 

diffraction. Reflection occurs when the pressure wave hits a stiffer medium such as a 

wall. According to Johansson and Laine (2007) the pressure of the wave can be 

increased by up to 20 times due to reflection. This phenomenon is important to keep 

in mind when dealing with explosions close to a building, and especially in city 

environment. 

Mirroring is a kind of reflection. It occurs when the explosion detonates close to a 

reflecting surface, see Figure 2.5. In theory the magnitude can double but due to some 

energy loss to the ground or surface, the mirroring factor will decrease. According to 

Johansson (2000) a mirror factor of 1.8 is often used. 
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 Explosion 

without obstacles 

Equivalent free 

explosion 

Explosion with 

mirroring 

Half of the released energy is 

prevented from entering the 

ground 

W 

W 

2W 

 

Figure 2.5 Schematic figure illustrating the ideal mirroring. 

The explosion is often sought to act with high energy in only one direction, which can 

be achieved by confining the explosive. The reflections of the explosive within the 

confinement delay the energy dispersal, and thereby increase the impact. 

Diffraction is another important phenomenon. This occurrence will give rise to 

change of direction for the wave front. In that way a wave front can reach behind and 

past buildings and objects, see Figure 2.6. This is a complex phenomenon but 

important to regard when designing structures. 

 

 

Load 

Diffraction 

Diffraction 

Reflection 

Reflection 

Confinement 

 

Figure 2.6 Clarification of the shock wave phenomena that occurs in urban 

environment. Johansson and Laine (2007) 

The distance from the point of source is a very important factor to consider when 

dealing with explosions. There are scale laws that are used to compare different loads 

and distances. For the case when the detonation occurs with free expansion on all 

sides, thus allowing a spherically expanding wave front, the scaled distance can be 

expressed as 

3/1W

r
Z   (2.1) 
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where r is the real distance and W is the energy amount (generally referred to the 

equivalent amount of kg TNT). For other cases than explosions in mid air the reader is 

referred to Johansson and Laine (2007). 

Experiments have been made to determine the equivalent amount of a specified 

explosive to the amount of TNT. Usage of Table 2.1 is a fast way to do this 

comparison and it can be beneficial to combine with Equation (2.1). The amount of 

energy released, W, will then be referred to as 

 weightequivalentwW   (2.2) 

where w is the amount of explosive. 

 

Table 2.1 Equivalent weight of various types of explosive where TNT is used as 

reference. Note that different equivalent weights are obtained for the 

pressure and impulse. From ConWep (1992). 

Explosive Equivalent weight 

 Pressure Impulse 

ANFO 
1)

 0.82 0.82 

Composite A-3 1.09 1.07 

Composite B 1.11 0.98 

Composite C-4 1.37 1.19 

H-6 1.38 1.15 

HBX-1 1.17 1.16 

Pentolite 1.42 1.00 

RDX 1.14 1.09 

TNT 1.00 1.00 

Tritonal 1.07 0.96 

    1) A mixture of diesel and fertilizer. 

The so called Archive bomb is an example of an explosion used by MSB to describe a 

weapon effect in the design of civil defence shelters in Sweden, Johansson and 

Laine (2007). This bomb contains 125 kg of TNT and detonates 5 m away from the 

studied target, affecting it with a uniform pressure that decreases with time. The blast 

is assumed to have a spherical spreading, with a peak pressure of 5000 kPa and an 

impulse intensity of 2800 Ns/m². When assuming a triangular load the corresponding 

load duration will for this detonation be 1.12 ms. This is a relatively strong explosion 

and ordinary buildings will not be able to withstand such an explosion. 

There are guidelines for how much TNT that can be contained in different explosion 

sources, see Table 2.2. These guidelines have been compiled in order to quickly be 

able to draw conclusions of an explosion. 
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Table 2.2 Definition of the explosive amount for different types of containers 

where the quantity is indicated by the equivalent amount of TNT. 

Johansson and Laine (2007). 

Explosion source Amount TNT 

[kg] 

Limit for damage 

to the eardrum 1) 

Slight damage to 

residental 

houses 2) 

Limit for 

window 

damage 3) 

Pipe bomb 

 

2.3 kg - 21 m 
(8 kPa, 26 Pas) 

259 m 
(0.3 kPa, 2 Pas) 

Suitcase 
bomb 

 

23 kg - 46 m 
(8 kPa, 56 Pas) 

564 m 
(0.2 kPa, 4 Pas) 

Small 
passenger car  

227 kg 30 m 
(44 kPa, 370 Pas) 

98 
(8 kPa, 120 Pas) 

457 m 
(1 kPa, 25 Pas) 

Big passenger 
car 

 

455 kg 38 m 
(44 kPa, 460 Pas) 

122 
(8 kPa, 150 Pas) 

534 m 
(1 kPa, 34 Pas) 

Van/ 

Minivan 
 

1 818 kg 61 m 

(43 kPa, 720 Pas) 

195 

(8 kPa, 240 Pas) 

838 m 

(1 kPa, 54 Pas) 

Small truck 

 

4 545 kg 91 m 

(37 kPa, 900 Pas) 

263 

(8 kPa, 330 Pas) 

1143 m 

(1 kPa, 73 Pas) 

Truck 
without 

trailer  

13 636 kg 137 m 
(34 kPa, 1250 Pas) 

375 
(8 kPa, 480 Pas) 

1982 m 
(1 kPa, 87 Pas) 

Truck with 
trailer 

 

27 273 kg 183 m 
(31 kPa, 1490 Pas) 

475 
(8 kPa, 600 Pas) 

2134 m 
(1 kPa, 130 Pas) 

1)  Lethal air blast range 
2)  Building evacuation distance 
3)  Outdoor evacuation distance 
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2.2 Materials 

When studying the response of loaded structures, the behaviour of the material is 

often complex but can be simplified with help of linear elastic, ideal plastic and 

elasto-plastic response. These simplifications usually give close approximations to the 

actual material response. Often these approximations are seen as potential sources of 

error but since comparisons between different methods are made, all using these 

approximations, it is disregarded in this Master thesis. In this section an introduction 

to the different responses are presented. 

 

2.2.1 Linear elastic 

For linear elastic behaviour there is a linear relation between stress and strain, as can 

be seen in Figure 2.7. The strain increases with increased stress and after unloading 

the strains will go back to zero. This means that the strain is proportional to the stress 

for materials with linear elastic behaviour and the stress, σ, can be expressed with 

Hooke’s Law: 

  E  (2.3) 

where E is the Young’s modulus and ε is the strain. 

 

ε 

σ 

 

 

E 

1 

 

Figure 2.7 Stress, σ, as function of strain, ε, for linear elastic materials. 

When a structure of linear elastic material is deformed it will gain an internal resisting 

force, R, proportional to the displacement, u, as can be seen in Figure 2.8. This 

relation is described by 

ukR   (2.4) 

where   is the structural stiffness. 

 

u 

R 

 

k 

1 

 

Figure 2.8. Structural response, R, as function of displacement, u. 
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A simply supported beam with linear elastic material response will deform, when 

subjected to a uniformly distributed load, with the shape shown in Figure 2.9. 

 

 

Figure 2.9. Deformation shape for simply supported beam when using linear elastic 

material and subjected to a uniformly distributed load. 

 

2.2.2 Ideal plastic 

For materials with ideal plastic behaviour the deformations are zero until the stress 

reaches the material yield stress. When this happens the deformations will occur, as 

seen in Figure 2.10. In theory these deformations are infinite but in reality there are 

limits such as the plastic rotation capacity for beams subjected to a bending moment 

and the ultimate strain limit for tensioned reinforcement bars. With the external static 

load, F, on the structure, the internal force, R, can be expressed as 










0  allfor  for  

0  andfor  

uRFR

uRFF
R

mm

m
 (2.5) 

where Rm is the maximum internal force. 

 

 

 

 

Figure 2.10 Ideal plastic material response, where (a) is the material response; (b) 

is the structural response. 

A beam with ideal plastic material response will deform with the shape shown in 

Figure 2.11, when subjected to a uniformly distributed load. 

(b) (a) 

 R 

u

ε 

  Rm fy 

ε

ε 

σ 
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Figure 2.11. Deformation shape for a simply supported beam when using ideal 

plastic material subjected to a uniformly distributed load. 

 

2.2.3 Elasto-plastic 

The elasto-plastic material behaviour is a combination between linear elastic 

behaviour and ideal plastic behaviour, see Figure 2.12. The material is fully reversible 

while in its elastic phase but when the load reaches the yield limit it will initiate 

permanent deformations. When unloaded, the deformations will decrease, following a 

curve parallel to the linear elastic curve. If the body is loaded again, the deformations 

will follow the elastic behaviour until the yield limit is reached and the plastic 

deformations will continue where it last ended. With the external load, F, on the 

structure, the internal force, R, can be expressed as 










 for     

for    

mm

mel

RFR

RFku
R  (2.6) 

where uel is the elastic displacement. 

 

σ 

 

 

ε

ε 

R 

 

u

ε 

  Rm 

(a) (b) 

Unloading and 

reloading 

Unloading and 

reloading 

fy 

εpl upl εel uel 

 

Figure 2.12. Elasto-plastic case (a) material response; (b) structural response. 

 

2.2.4 Theory of plasticity and plastic hinges 

When looking at a beam with rectangular cross-section subjected to pure bending, it is 

assumed for both theory of elasticity and theory of plasticity that the stress and strain 

is symmetric and linearly distributed over the height of the cross-section, see 

Figure 2.13. While the stresses in the beam are below the yield stress the cross-section 

will have an elastic response according to Hooke’s Law, and the elastic moment can 

be described as 
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2/h

I
M el





 (2.7) 

where σ is the stress in the outer fibre and I is the moment of inertia for the cross-

section. For a rectangular cross-section this is calculated as  

12

3wh
I   (2.8) 

where w is the width and h is the height of the cross-section. Combining Equation 

(2.7) and (2.8) the elastic moment can be written as 

elel WM   (2.9) 

where 

6

2wh
Wel   (2.10) 

When the stress reaches the yield stress fy the cross-section will start to yield. If the 

load is further increased the beam enters an elasto-plastic behaviour until the whole 

cross-section has yielded, see Figure 2.13. When the elasto-plastic state is reached 

only the inner elastic part will follow Hooke’s Law. For the plastic part the strain 

response stays linear but the stresses are modified to not exceed the yield limit.  

Just before the whole cross-section yields the maximum moment capacity, Mpl, is 

reached and according to Isaksson et al. (2010) for rectangular cross-sections it can be 

described as 

plypl WfM   (2.11) 

where 

4

2wh
Wpl   (2.12) 
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elMM   

 

plel MMM   

y  

y  

y  

y  s  

s  

a) 

b) 

s  

s  

y  

s  y  

s  

 

plMM   
c) 

 

Figure 2.13. Stress- and strain distribution for (a) before yielding starts; (b) part of 

the cross-section is yielding; (c) the whole cross-section is yielding 

(ultimate moment capacity). 

When the beam reaches its full plastic capacity the majority of deformations will 

occur in the most strained area of the beam. The moments and curvature of this small 

area will be large in comparison to the rest of the beam and this will cause a local 

plastic rotation in the area. The small deformable area where this large curvature is 

developed is called a plastic hinge, and the moments in the plastic hinge are assumed 

to be Mpl. For statically determined systems only one plastic hinge will develop, and a 

mechanism is formed. For statically undetermined systems of order   there will be 

    plastic hinges before the mechanism is formed. This is illustrated in 

Figure 2.14. If the beam is subjected to a dynamic load more plastic hinges can be 

formed. 

 



 
18 

 

Figure 2.14. Schematics of plastic hinges for a (a) simply supported beam; (b) fixed 

beam, Nyström (2006). 

After the plastic hinge has been developed the beam can still be deformed. How 

much, though, is determined by the plastic rotation capacity.  

 

2.2.5 Plastic rotation capacity 

Rotation capacity refers to the yield capacity during bending and is measured in the 

maximum angular change that a plastic hinge can go through while keeping the 

maximum moment capacity. This means that when a plastic or elasto-plastic material 

reaches its yield stress it can deform further until the maximum rotation capacity is 

reached and failure occurs. 

For concrete members there are several methods of determining the rotational 

capacity, but they may provide different results. According to Johansson (1997) one 

of the reasons may be because of the significant difference in steel properties used in 

reinforcement bars over the last decades. 

Curvature Curvature 

Model Model 

Parts with yielding Part with yielding 

Plastic hinge Plastic hinges 

(a) (b) 
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From Eurocode 2, CEN (2004), the method of estimating the maximum allowed 

rotation capacity is acquired from a diagram with regard to the quality of concrete, 

reinforcement class and the ratio between the compressed zone x and the effective 

depth d, as seen in Figure 2.15. 

 

 

 

x / d 

pl  [10 
-3
 rad] 

betong-
krossning avsliten 

armering 

 

Crushing of 

Concrete 

 
Steel 

Ripped off         

Ripped off 

 

Figure 2.15. Diagram based on Eurocode 2 CEN (2004) describing maximum 

allowed plastic rotation. 

The lines in the Figure 2.15 are based on a shear slenderness λ=3.0, where λ is given 

by 

d

l0  (2.13) 

where l0 is the length between the point of zero moment and the plastic hinge and d is 

the effective depth to the reinforcement. 

If λ has values other than 3, the rotation capacity should be multiplied with a factor 





k  (2.14) 

in the following manner: 

plrd k     (2.15) 
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2.3 Dynamics 

To fully understand how an explosive load affects a structure it is important to look at 

the dynamic conditions. While structures are usually designed to withstand static 

loads for infinite load time, an explosion will affect the structure with high pressure 

during a short duration of time. This means that even though the pressure from the 

explosion is much higher than the pressure of the static load the structure is designed 

for, the structure might still withstand. When designing structures from a dynamic 

perspective it is therefore important to compare the energy from the explosion to the 

energy required for the structure to collapse. The basics of dynamics are given in this 

section so that the reader may understand this concept of designing. 

 

2.3.1 Kinematics 

2.3.1.1 Velocity 

The definition of velocity is change of displacement over time, i.e. if an object moves 

from u0 to u1 during time t0 to t1 the mean velocity of that object is expressed as 

01

01

tt

uu
v




  (2.16) 

By letting the time step be infinitesimal the change in motion will also be 

infinitesimal and the velocity at time t can be determined as 

u
dt

du

tt

uu
tv 






01

01)(  (2.17) 

 

2.3.1.2 Acceleration 

The definition of acceleration is the change of velocity over time, which means the 

mean acceleration is defined as 

01

01

tt

vv
a




  (2.18) 

In the same way as for velocity, if the time step is infinitesimal the change of velocity 

will also be infinitesimal and the acceleration at time t can be determined as 

u
dt

dv

tt

vv
ta 






01

01)(  (2.19) 

 

2.3.2 Kinetics 

2.3.2.1 Force and Pressure 

According to Newton’s second law a force F is defined as the acceleration of a mass: 
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amF   (2.20) 

where m is mass and a is acceleration. 

 

The pressure P is defined as the force F over an area A: 

A

F
P   (2.21) 

 

2.3.2.2 Momentum, impulse and impulse intensity 

The momentum, p, of an object is defined as the objects mass m times its velocity v: 

mvp   (2.22) 

If the object is subjected to a force F from time t0 to t1 the difference in momentum 

can be written as 


1

0

)(

t

t

dttFp  (2.23) 

If an object is already moving with velocity v0 and momentum p0 when it is subjected 

to the force the new momentum p1 can be written as 

ppp  01  (2.24) 

where Δp is the so called impulse I. By insertion of Equation (2.19) and (2.20) in 

(2.23) the impulse can be rewritten as 

mvdttamdttmadttFI

t

t

t

t

t

t

 
1

0

1

0

1

0

)()()(  (2.25) 

Since shockwaves are measured in pressure the impulse from an explosion can also be 

written as 


1

0

)(

t

t

dttPAI  (2.26) 

The intensity i of the impulse can be described as an impulse acting on an area, or the 

pressure over time, as 


1

0

)(

t

t

dttP
A

I
i  (2.27) 

For the idealized shockwave in Figure 2.16 the impulse intensity is illustrated as the 

area under the pressure-time graph. 
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 P 

t 

i 

t0 t1 
 

Figure 2.16 The impulse intensity i is the area under the pressure-time curve. 

Since the impulse is defined as the area times the force over time there are two 

extreme cases for the impulse intensity. Either the pressure is infinitely high for an 

infinitesimal time or the force is constant for an infinitely long time, see Figure 2.17. 

The first case with the infinitely high pressure is called the characteristic impulse Ik 

and the latter is called the pressure load, Fk. 

 

Force, F 

Time, t 

Ik 

ta 

(a)  

Force, F 

Time, t 
ta 

Fk 

(b) 

Figure 2.17 Illustration of extreme dynamic cases starting at time ta: 

(a) characteristic impulse, Ik and (b) characteristic pressure load, Fk. 

 

2.3.3 Work 

The term work refers to the amount of energy required to move a body subjected to a 

force. Work can be expressed either in potential or kinetic energy, Wk, and is usually 

divided into internal work, Wi, and external work, We, which is a useful tool for 

studying the response of a structure subjected to a load. In a closed system all energies 

are said to be conserved, which means no energy will be added or lost from the 

system but only transformed. This means, according to work equilibrium: 

kie WWW   (2.28) 

In reality, though, there will always be energy losses due to friction and heat 

development, i.e. the damping of the system. 
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2.3.3.1 External work 

External work refers to either the external forces that move the body through space or 

as the impact transferring kinetic energy into potential energy in the body. The kinetic 

energy Ek of a body with mass is given by the equation 

2

2mv
Ek   (2.29) 

where m is the mass and v is the velocity. 

By inserting Equation (2.25) in (2.29) the kinetic energy and external work for a body 

subjected to an impulse can be expressed as 

m

I
EW ke

2

2

  (2.30) 

When transferring kinetic energy into potential energy in a structure the stiffness will 

induce a resistance that increases with time, but internal work induced during the 

duration of the load is negligible compared to the external work. Therefore Equation 

(2.30) is only correct when the load duration and resistance is infinitesimal, i.e. when 

the impulse I corresponds to the characteristic impulse Ik: 

 
m

I
EW k

ke
2

2

  (2.31) 

Since the resistance increases with time, the structure will have time to absorb more 

energy from a long impulse, and hence, the external work will decrease for a longer 

impulse load than for the characteristic impulse. This is illustrated in Figure 2.18. 

We,1 - characteristic impulse 

We,2 - for arbitrary shockwave 

 

Force, F 

Time, t 
dt 

I1 = I2 but We,1 > We,2 

t1 
 

Figure 2.18 Different external work on the structure for the same total impulse but 

with different durations.  
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2.3.3.2 Internal work 

The internal work arises as a response to the load and is dependent of the structure’s 

geometry and material behaviour. Although depending on which type of material the 

structure has the properties for the internal work will differ but the final value will 

always be the same, see Figure 2.19. 

 

u 

R 

Wi 

uel 

k 

u 

R 

Rm 

upl 
u 

R 

Rm 

utot uel 

utot = uel + upl 

k 

     (a)       (b)          (c) 

Figure 2.19 Structural response when assuming (a) linear elastic response, (b) 

plastic response, (c) elasto-plastic response. 

The definition for internal work is the absorbed energy in the structure over the 

deformation and is expressed by 


1

0

)(

u

u

i duuRW  (2.32) 

where R(u) is the resisting force of the structure. From Section 2.2 the different types 

of idealized material behaviour are linear elastic, ideal plastic and elasto-plastic 

behaviour. By combining Equations (2.6) and (2.32) the three equations can be given 

as 

2
)(

2

00

,
el

u

el

u

eleli

ku
dukuduuRW

elel

   (2.33) 

plmplm

u

m

u

plpli uRuRduRPduduuRW

ppl
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1

0
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,  (2.34) 
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 (2.35) 

From the work equilibrium, Equation (2.28), the deformations for elastic and plastic 

behaviour can be given respectively as 

m

I

km

I
u kk

el   (2.36) 

where 
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m

k
  (2.37) 

is the angular frequency and

 

m

k
pl

mR

I
u

2

2

  
(2.38) 

For elasto-plastic behaviour the structure is first deformed from u = 0 with elastic 

behaviour until the load reaches the limit Rm. This happens at uel,1 and if the load 

F ≥  Rm the deformations will be plastic until utot, see Figure 2.20. 
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utot = uel,1 + upl,1 
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(a) (b) (c) 

Figure 2.20 System with elasto-plastic response: (a) single degree of freedom-

system, (b) force-displacement relation, (c) energy equilibrium between 

external ,We, and internal energy, Wi. 

If the pressure load, Fk, is applied to a structure with elasto-plastic behaviour, the 

plastic deformations can be reached even though the magnitude of the load is lower 

than the response limit, Rm. This is due to the need of fulfilling the work equilibrium 

in Equation (2.28) and the fact that the external work from pressure load has a 

rectangular shape whilst the internal work has a triangular shape during elastic 

deformations, see Figure 2.21. If the pressure load, Fk, is half the size of the response 

limit, Rm, or larger, plastic deformations will be formed; the size of the plastic 

deformations depend on the stiffness, k. 
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Figure 2.21 System with elasto-plastic response. Plastic deformations are formed 

even though the load is lower than the response limit, Rm, due to the 

energy equilibrium between external, We, and internal energy, Wi.  

As seen from Figure 2.20 the internal work for elasto-plastic behaviour can be written 

as 

)2(
2

1,1, plel
m

i uu
R

W   (2.39) 

where uel,1 is the limit where the material behaviour goes from elastic to plastic 

response is defined as 

k

R
u m

el 1,  (2.40) 

By combining Equation (2.31) and (2.39) in the work equilibrium Equation (2.28) the 

plastic deformations for elasto-plastic behaviour can be expressed as 

222

1,1,

2

1,

el

pl

el

m

k
pl

u
u

u

mR

I
u   (2.41) 

where upl is the response for an ideally plastic material behaviour, also seen in 

Equation (2.38). The total deformation is given by 

2

1,

1,1,

el

plpleltot

u
uuuu   (2.42) 

 

2.3.3.3 Work with regard to recoil 

For doubly reinforced concrete beams with different amount of top and bottom 

reinforcement the material response differs depending on which direction the beam is 

deflecting. As an example, in Figure 2.13 the material response is shown for a doubly 

reinforced concrete beam with (a) equal bottom and top reinforcement and maximum 

internal resistance; (b) equal bottom and top reinforcement but lower maximum 

internal resistance for the recoil, and (c) more bottom than top reinforcement, 

resulting in both lower stiffness, k2, and maximum internal resistance, Rm,2, when the 

beam is deflecting upward compared to when it is deflecting downward with stiffness, 

k1, and maximum internal resistance, Rm,1. 
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Figure 2.22. Internal resistance as function of displacement for a beam with (a) k1=k2 

and Rm,1=Rm,2; (b) k1=k2 and Rm,1>Rm,2 and (c) k1>k2 and Rm,1>Rm,2. 

The internal resistance varies linearly between A and B where the maximum internal 

resistance is reached. The beam then yields until all kinetic energy has been 

transformed into potential energy in C. The beam then has a surplus of energy and 

wants to return to its new equilibrium D, where all potential energy is transformed 

into kinetic energy. The beam in (a) here continues to deflect until all kinetic energy 

has been transformed to potential energy and the beam oscillates between C and E. 

The integral over CD describes the work WCD and the integral over DE describes the 

work WDE. If no additional loads and no energy losses are assumed, WCD = WDE. 

For a beam with properties according to (b), where the second maximum internal 

resistance Rm,2 is smaller than Rm,1, the beam will yield before all kinetic energy has 

been absorbed. The yield limit F is determined by the energy equilibrium where 

WCD=WDEF. Here, the beam will oscillate between F and H as WFG=WGH. 

For a beam with properties according to (c), where both the secondary stiffness k2 and 

maximum internal resistance Rm,2 is smaller than for the beam in (b), the beam can 

yield further in the second direction if the load is large enough. When the beam starts 

to deflect downward the internal resistance varies linearly from A to B, where the 

yielding starts. The beam yields from B to C until all kinetic energy has been 

translated into potential energy, and the beam begins to return to its new equilibrium 

D. As the resistance passes D, due to the kinetic energy, the stiffness properties 

change and the resistance varies linearly with the lower stiffness k2 until the maximum 

resistance Rm,2 is reached in E. Here the beam yields until all kinetic energy has been 

transformed into potential energy in F. The beam then begins to return to the new 

equilibrium G. The resistance varies with the same stiffness between F and G as 

between E and D. When G has been passed, the beam is deflecting downward again 

and so the resistance varies between G and H with the same stiffness as between A 

and B and between C and D. As the beam reaches H, all kinetic energy has been 

consumed and transformed into potential energy, so the beam starts to return to 
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equilibrium G. The beam will now oscillate between H, G and F without any further 

plastic deformations. 

This material response was from the beginning intended to be studied in this thesis 

with regard to the recoil of the beam. However, due to lack of time this has not been 

done. 

 

2.3.4 Equivalent static load 

Instead of using the dynamic impulse, it is possible to translate it into an equivalent 

static load which is more intuitive for most structural engineers. The equivalent static 

load is derived, mainly from the equations in Section 2.3.3.2, so that its maximum 

deflection will be the same as the impulse load. For this statement to be true, the 

maximum potential energy from the static load should be equal to the maximum 

potential energy from the dynamic load. Since the total energy of an undamped closed 

system is constant over time it is fair to assume that the maximum kinetic energy is 

reached when the potential energy is zero. Therefore 

case  dynamic  energy,  kinetic  Maximum  case  static  energy,  Potential   (2.43) 

2.3.4.1 Elastic response 

For an elastic system the static load, Q, can be expressed as 

elkuQ   (2.44) 

and the external energy, We, as 

k

Qku
W el

e
22

22

  (2.45) 

Insertion of Equation (2.31) and (2.45) in (2.43) gives 

m

I

k

Qku kel

222

222

  (2.46) 

thus 

kk I
m

k
IQ   (2.47) 

 

2.3.4.2 Plastic response 

For the plastic case the maximum static load Q is determined by the maximum 

resistance Rm 

mRQ   (2.48) 

and so the external energy can be expressed as 



 
29 

plplme QuuRW   (2.49) 

Insertion of Equation (2.49), (2.31) and (2.45) in (2.43) gives 

m

I
Qu k

pl
2

2

  (2.50) 

thus Q can also be expressed as 

pl

k

mu

I
Q

2

2

  (2.51) 

 

2.3.4.3 Elasto-plastic response 

The elasto-plastic response is a combination of elastic and plastic response which 

means that the equivalent static load is, as in the plastic response determined by 

RQ   (2.52) 

but where R is determined by elastic stiffness k, through the elastic deformation uel,1 

from Equation (2.40), and the plastic deformation upl,1 from Equation (2.41): 

plkuR   (2.53) 

 

2.3.5 Wave propagation 

When a body is subjected to an impulse load, the energy will propagate through the 

body as mechanical waves. Depending on the speed of these waves, different parts of 

the body will be affected by the impulse at different times, which is of great 

importance in structures subjected to explosions. In order to explain what happens, the 

wave propagation is discussed. This is illustrated in Figure 2.23 where a 3 m high and 

5 m deep concrete structure is subjected to an explosion from the left side. The speed 

of which information travels in concrete is about 3500 m/s, which means that it will 

take about 1.4 ms before the rear wall “knows” about the explosion. This can be seen, 

as the rear wall after 1 ms is still unaffected by the load, but after 2 ms it has started to 

deform. The dark colour indicates that cracks have developed fully in the front wall 

after 2 ms while the floor and roof is still unaffected. After 3 ms, though, the cracking 

has begun in floor, roof and rear wall. It is not until after 5 ms that the largest 

deformations in the front wall occur. 
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t = 1 ms t = 2 ms 

  

t = 3 ms t = 5 ms 

Figure 2.23 Response of a shelter subjected to an explosion from the left. The 

deformations are enhanced 20 times and the dark colour marks fully 

developed cracks. From Johansson (1999) 

In order for mechanical waves to be able to propagate they require a medium (gas, 

fluid or solid) which means they cannot propagate through vacuum, as 

electromagnetic waves can. Mechanical waves can further be categorized as 

longitudinal waves, transverse waves and surface waves. 

Longitudinal waves, often called pressure waves or compressional waves, travel 

parallel to the direction of energy while transverse waves, commonly called shear 

waves, travel perpendicular to the direction of energy, see Figure 2.24. Surface waves 

travel in elliptical patterns and can be seen for example as ripples on a water surface. 
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(a) 

(b) 

(c) 

Half wave length λ/2 

Wave length λ 

uy ux 
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Figure 2.24 Waves propagating through a body for (a) material at rest; (b) pressure 

wave; (c) shear wave.  

Mechanical waves are caused by the oscillation of particles in the body and are 

therefore highly dependent on the elastic and internal properties of the material, 

NDT (2009). Pressure waves are both stronger and faster than shear waves and can 

travel through all mediums, while shear waves can only travel through solids. 

According to Laine (2012) the celerity of a pressure wave, cp, is 






)()(

)(

vv

Ev
cp

2113

1
 (2.54)  

where E is the Young’s modulus of elasticity, ρ is the density and ν is the Poisson’s 

ratio. Usually the energy propagates through the body as a combination of all the 

waves, but the type and direction of the load will affect the type of wave that will be 

dominant in the body. For example, the majority of information in a beam loaded by 

an axial force will propagate as a pressure wave while in the case of a load 

perpendicular to the longitudinal axis the shear wave will be much more prominent. 

The velocity of the shear wave, cs, is greatly affected by the shear modulus of the 

material and can be written as 



G
cs   (2.55) 

with the shear modulus given by 

)1(2 v

E
G




 
(2.56) 
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Pressure waves are also commonly referred to as sound. The speed of sound for 

different mediums is seen in Table 2.3. These values are estimated velocities that 

varies with change in density, e.g. from change in temperature or pressure. 

 

Table 2.3. Estimated velocity of sound for different mediums. Based on The 

engineering toolbox (2012). 

Medium Velocity (m/s) 

Air 343 

Aluminium 6420 

Concrete 3200-3600 

Iron 5130 

Lead 1158 

Rubber 40-150 

Steel 6100 

Water 1433 

 

2.3.6 Vibrations 

A beam subjected to a dynamic load can be described by a mass-spring system as seen 

in Figure 2.25. The deformation resistance of the spring is generally referred to as 

stiffness, k. The stiffness depends on the Young’s modulus E, moment of inertia I and 

length L of the beam. The response of a beam depends on the type of loading, for 

example a point source or a distributed load, and also the boundary conditions, for 

example simply supported or a clamped beam. When dealing with arbitrary dynamic 

loads the damping, c, is often included. 
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Figure 2.25 Mass spring system with (a) properties; (b) damped mechanical forced 

vibration; (c) undamped mechanical forced vibration. 

 

When the mass-spring system is externally loaded by the dynamic load F(t) the 

internal forces Rsta and Rdyn act in opposite direction in an attempt to bring the 

displaced beam back to its equilibrium position. The internal forces Rsta and Rdyn refer 

to the static and dynamic resistance in a structure and for a linear elastic response and 

they are given by 

kuRsta   (2.57) 

ucRdyn
  (2.58) 

where k is the stiffness, c is the damping, u is the displacement and    is the velocity of 

the body. 

According to Newton’s second law of motion, seen in Equation (2.20), there is 

equilibrium when 

umRRtF stadyn
)(  (2.59) 

or 

)(tFRRum stadyn   (2.60) 

By insertion of Equations (2.57) and (2.58) in (2.60) the dynamic equation of motion 

can be written as 

)(tFkuucum    (2.61) 

In an idealized closed system with no friction, no energy losses and the driving force 

F(t)=0, this motion is called an undamped free vibration and will continue to oscillate 

with the same frequency to infinity if not disturbed. In case of explosions there will be 

a driving force in form of a short impulse to the structure and during this time the 

motion will be a so called forced vibration until the load wears off and the motion 

becomes a free vibration. In reality, though, all structures have a damping effect that 
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will reduce the displacements in the oscillation so the simplification of an idealized 

undamped structure will always be on the safe side. Because of this, it is not always 

necessary to regard the damping, which makes the equation more complex, and the 

equation can thus be simplified further by neglecting the effect of damping. 

The simplified method is initially presented and used during this Master thesis, but in 

Section 5.2 the effects of damping are included and compared to the undamped case. 

 

2.4 Transformation to SDOF-system 

When working with dynamic loads it is common to transform the affected structure 

into a single degree of freedom-system. This is done to simplify the calculations and 

can often be sufficiently accurate. When transforming an impulse loaded beam into an 

SDOF-system, so called transformation factors are used. 

 

2.4.1 SDOF-system 

A beam is often referred to as a simple structure, Chopra (2011). This is because a 

beam’s deflection approximately can be simplified as the movement of only one point 

in one direction. This point is called the system point and is usually placed where the 

beam’s deflection is largest, which for a simply supported beam that is subjected to a 

uniformly distributed load is in the mid span. By idealizing a beam in this order one 

will simplify the calculations, making it easy to determine the deflection for a specific 

load. When only using one point to describe the displacement for a certain system it is 

called a single degree of freedom-system, referred to as an SDOF-system, see 

Figure 2.26. In order to perform the calculations for a beam it is necessary to 

concentrate the equivalent mass, me, to the system point, also called lumped mass. 

   

cIELm ,,,,  
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ek  ec  

 

em  

)(tFe  

 

Figure 2.26. Transformation of the beam into a single degree of freedom-system. 

When transforming the beam into an SDOF-system the properties of the beam, such 

as length L, Young’s modulus E and the moment of inertia I, will be included in the 

stiffness k. For a simply supported beam and a uniformly distributed load the stiffness 

can be derived from the maximum displacement in the mid span: 

qLu
L

EI

EI

qL
u  max3

4

max
5

384
  or                  

384

5
 (2.62) 
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It is also known that the force is equal to the stiffness times the displacement: 

kuF   (2.63) 

qLF   (2.64) 

and thus 

35

384

L

EI
k   

(2.65) 

 

A beam deflects differently depending on the loading. In cases with dynamic loading 

the beam is affected by the frequency of the load. Different mode shapes can be used 

to describe the deflection, see Figure 2.27. The lower the frequency, the lower the 

degree of mode shapes. An SDOF-system, however, is only able to describe the first 

mode shape. In theory, if an impulse that consists of every frequency, a so called 

Dirac-impulse, affects a beam it will excite every mode of vibration with equal 

energy. However, if the Dirac-impulse is evenly distributed over a perfectly 

symmetrical beam it will only excite every other mode, the symmetrical modes, since 

the non-symmetrical modes has a net deflection of zero. Since the first mode shape 

only has one deflection it will be the most prominent; hence the SDOF-system is a 

good way to describe the deflection. 

To be able to describe higher order of mode shapes it is necessary to use multi degree 

of freedom, MDOF, systems. The number of degrees of freedom corresponds with the 

number of mode shapes it can describe. For example, a three degree of freedom 

system can describe the first three mode shapes, also seen in Figure 2.27. The number 

of mode shapes excited mainly depends on the time interval of the impulse. Higher 

mode shapes oscillate with higher frequencies, which is reversely proportional to 

time. For longer time intervals mainly lower frequencies will be excited, but as the 

time interval approaches zero the frequencies become infinite. 

 

 

Figure 2.27. The three first mode shapes for a simply supported beam. 

  

Second bending mode 

Third bending mode 

First bending mode 
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2.4.2 Transformation into an equivalent SDOF-model 

When transforming a beam, subjected to an impulse, into an SDOF-model it is not 

sufficient to calculate the stiffness for the beam and use the same mass for example. It 

is necessary to transform the SDOF-model into an equivalent SDOF-model. This 

transformation is done with help of transformation factors κ, Johansson and 

Laine (2009). The transformation factors have indexes indicating which parameter 

they are affecting and m, c, k and F are the beam’s real mass, damping, stiffness and 

external force respectively: 

mm me   (2.66) 

cc ce   (2.67) 

kk ke   (2.68) 

FF Fe   (2.69) 

where the index e denotes that it is an equivalent parameter. The initial equation of 

motion, Equation (2.61), can now be re-written: 

)(tFkuucum Fkcm     (2.70) 

When deriving the transformation factors an assumption of conservation of energy is 

made. This is the foundation for the transformation factors. For κm, κk, and κF, there is 

an assumption of conservation of kinetic-, internal- and external energy respectively. 

According to Biggs (1964) the transformation factors for internal energy κk is equal to 

the factor for external energy κF: 

Fk    (2.71) 

The derivation of the transformation factors is regarded to the support conditions, 

stiffness distribution, load profile and material model, i.e. the deformation of the beam 

is of utmost importance. The expression of the mass factor κm and the external force 

factor κF will be as follows: 
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(2.73) 

where us is the maximum displacement and u(x) is the deflection of the beam. For the 

full derivation of the transformation factors the reader is referred to Johansson and 

Laine (2009). 
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In order to simplify the equations, Equation (2.70) is divided by κF: 

)(tFkuucum
F

k

F

c

F

m 











  (2.74) 

which leads to 

)(tFkuucum cFmF     (2.75) 

when implementing (2.71) and where  

F

m
mF




   (2.76) 

and 

F

c
cF




   (2.77) 

The values for some transformation factors for different load cases, material models 

and supports for beams are gathered in Table 2.4 and Table 2.5. 

 

Table 2.4. Transformation factors for a beam subjected to a point load. From 

Johansson and Laine (2009). 

 

Point load on beam element 

 

 
 

 
 

 
 

 

Elastic deformation curve 

m  0.486 0.371 0.445 0.236 

F  1.000 1.000 1.000 1.000 

mF  0.486 0.371 0.446 0.236 

 Plastic deformation curve 

m  0.333 0.333 0.333 0.333 

F  1.000 1.000 1.000 1.000 

mF  0.333 0.333 0.333 0.333 
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Table 2.5. Transformation factors for a beam subjected to uniform load. From 

Johansson and Laine (2009). 

 

Uniformly distributed load on beam element 

   
 

 
 

 

 

Elastic deformation curve 

m  0.504 0.406 0.483 0.257 

F  0.640 0.533 0.600 0.400 

mF  0.788 0.762 0.805 0.642 

 Plastic deformation curve 

m  0.333 0.333 0.333 0.333 

F  0.500 0.500 0.500 0.500 

mF  0.667 0.667 0.667 0.667 

The κc factor has not been derived in the same manner as the other transformation 

factors, the damping in general is difficult to determine. It is believed that κc=κk but 

has not fully been studied. Since an impulse has a very short duration the impact of 

the damping is very small and has often been neglected. It is also on the safe side to 

neglect the damping which is why Equation (2.75) often is simplified to 

)(tFkuummF   (2.78) 

In this Master thesis it will be investigated whether the assumption 

1
F

c
cF




  (2.79) 

is correct or not. 

There are no special elasto-plastic transformation factors so when dealing with elasto-

plastic materials one is referred to either use elastic, plastic or both transformation 

factors. In previous Master theses it has been shown that using these transformation 

factors, shown in Table 2.5, for an elasto-plastic material is not fully satisfying. 

Andersson and Karlsson (2012) have studied the possibility of having time dependent 

transformation factors. They show that this type of modelling can be very satisfying. 

The factors are then derived using a FE-analysis and the beams deformation at 

multiple times. However, usage of time dependent transformation factors are not 

desirable because the simplicity of the SDOF-model loses its benefits when a FE-

analysis need to be performed simultaneously. This Master thesis will use the ordinary 

transformation factors and discuss the agreement. 
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2.4.3 Equivalent work 

With the knowledge of the transformation factors it is now possible to derive the 

equivalent work an SDOF-model performs. In alignment with Section 2.3.3 the 

external, internal and kinetic energy can be re-written to include the transformation 

factors: 

sFe FuW 
 

(2.80)  

sFi uuRW )(
 

(2.81)  
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sm
k

mv
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
  (2.82)  

As mentioned before, there has to be equilibrium between the different energy levels. 

For a characteristic impulse the external energy is equal to the kinetic energy, 

according to Equation (2.31). The goal is to derive the equivalent work achieved by a 

characteristic impulse. In order to do so it is necessary to consider the equivalent 

equation of motion in its basic form from Section 2.4.2: 

)(tFukum eee   (2.83) 

where 

mm me   (2.84) 

kk ke 
 (2.85) 

FF Fe 
 (2.86) 

The definition of an impulse in Equation (2.25) can be expressed for an equivalent 

SDOF-model in the following manner: 

 
1

0

t

t

smFSDOF mvdttFI  )(  (2.87) 

Since the equivalent impulse should be equal to the characteristic impulse times the 

force transformation factor 

kFSDOF II   (2.88) 

the following expression can be derived: 

kFsm Imv    (2.89)  

Since the goal is to derive the equivalent work achieved by a characteristic impulse 

the expression for the velocity is squared and then inserted in the equation for kinetic 

energy, Equation (2.82): 
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3 Structural response of a concrete beam 

A wall with the purpose of withstanding an impact load is normally designed with a 

symmetric cross-section, with equal amount of reinforcement on both sides and no 

curtailment. Impact loads from explosions are usually anticipated for buildings such 

as nuclear power plants, petro-chemical industries and protective facilities, but 

generally not in other civil structures. In civil structures there is therefore a risk that 

even if the wall does not fail from the first hit it might fail from either the negative 

phase of the explosion, the recoil from internal stiffness or a combination of them. 

When designing with regard to an explosion the engineer needs to understand how the 

structure can absorb energy without getting a brittle failure. A reinforced concrete 

beam is good in this aspect since the mass is high and the structure can be designed to 

have a ductile behaviour. There is a big difference between a statically loaded 

structure and a dynamically loaded. When subjected to an explosion it is good if the 

structure can yield since the energy absorption then increases. Hence, it is better to 

have a structure with the ability to absorb energy than one with high stiffness that is 

reluctant to deform since this might lead to a brittle failure. However, a structure with 

high stiffness and good yielding ability is also good with regard to an explosion. 

When performing analyses of a wall it is sometimes beneficial to simplify it as a beam 

because the calculations become simpler and the results are on the safe side; a beam 

can only carry the load in one direction while a wall carries it in two. To better 

explain the behaviour of an impulse loaded beam, an example is made for a reinforced 

concrete beam subjected to an explosion. With no possibility of actually testing the 

beam, it is modelled and analysed with the finite element software ADINA (2011) 

which is considered to represent the true behaviour good enough. An equivalent 

SDOF-system and simplified hand calculations are also made for the beam and these 

are compared to the results from ADINA. The beam is further simplified by limiting it 

to the three material behaviours explained in Section 2.2, i.e. linear elastic, ideal 

plastic and elasto-plastic, where the linear elastic is divided into stadium I (uncracked 

concrete) and stadium II (cracked concrete). 

 

3.1 Geometry and loading 

The analysed beam is a simplification of a 1 m wide strip from a 3 m high and 

200 mm deep concrete wall with no openings, see Figure 3.1. The wall is situated in a 

civil building meaning the reinforcements in both sides does not have to be equal, in 

contrary to for example civil defence shelters and military facilities. However, the 

reinforcement in this wall is steel B500B Ф10 s150, with a concrete cover of 45 mm 

on both sides. The reinforcement in compression is mainly included to be the 

reinforcement in tension when the wall recoils and it could be neglected as 

reinforcement in compression. In this example it is included to better show the 

calculation method. 

The wall is mainly analysed for an impulse with the intensity i of 1000 Pas; the peak 

pressure will be 500 kPa and the load duration 4 ms. If the bomb is assumed to have a 

hemispherical spreading this load characteristics would, according to ConWep (1992), 

approximately correspond to two, so called, suitcase bombs, see Table 2.2, placed on 

the ground 10 m away from the wall. Each suitcase bomb contains approximately 

25 kg TNT, i.e. a total of 50 kg TNT. This is shown in Figure 3.2. Since the distance 
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to the wall would correspond to 10 m the load will affect the wall with a near 

uniformly distributed pressure that decreases with time. 

 

Bottom reinforcement 

3.0 m 

(a) (b) 

0.2 m 

1.0 m 

Top reinforcement 

 

Figure 3.1. (a) Impact loaded wall with boundary conditions; (b) Cross-section. 

  

10 m 

3 m  

 

50 kg TNT 

 

Figure 3.2. Schematic figure of the explosion and the impact loaded wall. 

In order to give the reader better understanding in the importance of load time, the 

wall is also analysed for other load cases with different peak pressures, but with the 

same impulse intensity as the first load case. It is in Section 5.1 shown that the 

different load cases will influence the result a lot. It is then interesting to have both 

more and less intense impulses to compare with the default load case. The load case 

denoted as load case 1 will be the default load case in this Master thesis unless 

anything else is mentioned. All load cases are shown in Figure 3.3. 
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Load case Ppeak [kPa] t [ms] 

LC0 250 8 

LC1 500 4 

LC2 1,000 2 

LC3 4,000 0.5 

t
 

Ppeak 

Ppeak, 3 

Ppeak, 2 

Ppeak, 1 

t3 t2 t1 t0 

Ppeak, 0 

 

Figure 3.3. The different load cases with the same impulse intensity i=1000 Pas. 

LC1 is the default load case used in this Thesis. 

The support condition for the wall is in reality somewhere between clamped and 

simply supported, but in the analyses it is assumed to be simply supported along its 

top and bottom, which also gives values on the safe side. The wall can then be 

simplified to a 1.0 m wide, simply supported beam with properties according to 

Table 3.1. When structures are subjected to accidental loads the partial factors, γc and 

γs, are set to 1.2 and 1.0 for concrete and steel, respectively. 

 

Table 3.1. Properties for the beam 

Concrete C30/37 

Reinforcement Ф10 s150 B500B 

Ec 33 GPa 

Es 200 GPa 

fcc 30 MPa 

γc 1.2 

fsy 500 MPa 

γs 1.0 

Concrete cover, c 45 mm 

Height, h 0.2 m 

Length, L 3.0 m 

Width, w 1.0 m 

Effective height, d 150 mm 
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3.2 Hand calculations 

While the SDOF- and FE-solutions display results for displacements, forces and 

energies over time, it is often of interest to perform a quick check of the maximum 

values. This is easily done by hand, and uses only parts of the input for the SDOF-

analysis. 

To determine the displacements by hand, Equation (2.36), (2.38) and (2.42) from 

Section 2.3.3.2 are used: 
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In order to calculate these, the equivalent mass, stiffness and maximum internal 

resistance must first be determined. 

 

3.2.1 Mass and stiffness 

With a density of 2400 kg/m³ the mass for the beam can be calculated to 

kg 14400.32.00.12400  Lhwm   (3.4) 

In order to obtain the right deformation shape, the mass is transformed to equivalent 

mass for the elastic and the plastic case by multiplying it with the transformation 

factor kmF from Table 2.5: 

kg 11351440788.0  mm mFel   (3.5) 

kg 9601440667.0  mm mFpl   (3.6) 

For the case of a simply supported beam, the stiffness of the beam is calculated as 

35

384

L

EI
k   (3.7) 

where E is Young’s modulus of elasticity, I is the moment of inertia and L is the 

length of the beam. Depending on whether the cross-section is cracked or not, the 

moment of inertia can, for the elastic material response, further be divided into II and 

III for stadium I and II, respectively. 

Because the amount of reinforcement is low it is likely that the top reinforcement in 

stadium II will be in tension and not in compression, and the lever will be very small 

in comparison to the bottom reinforcement. When designing, the forces in the top 
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reinforcement can be assumed to be negligible, but for this analysis they are regarded 

to keep down the potential sources of error. The moment of inertia for stadium I is 

then given by  

222
3

)(()'('()
2

(
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cgscgscgI xdAxdAx
h

wh
wh

I    (3.8) 

where xcg is the centre of gravity for the cross-section, α is the ratio between the 

Young´s modulus for steel and concrete, d and d’ is the distance from the top to the 

bottom and top reinforcement, respectively, and As and As’ is the area of the bottom 

and top reinforcement bars: 
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Since the cross-section is symmetric 

mm 100
2
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h
xcg  (3.11) 

inserting Equation (3.9), (3.10) and (3.11) in (3.8), the moment of inertia can be 

calculated as 
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In the case of elastic stadium II where the cross-section has cracked the moment of 

inertia is 
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I ssII    (3.13) 

where x is the height of the compressed zone. Since, there are no normal forces acting 

on the cross-section, i.e. pure bending, the compression zone can be determined using 

area equilibrium: 

0)()'('(
2

2
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wx

ss   (3.14) 

Solving for x gives the height of the compressed zone: 

mm 30x  (3.15) 

By inserting (3.15) in (3.13) the moment of inertia for the cracked case is given as 
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The stiffness for elastic stadium I and II, respectively, can now be calculated using 

Equation (3.7): 

N/m 1038.6
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3.2.2 Maximum internal resistance 

For a simply supported beam when loaded with a distributed load the maximum 

internal resistance is defined as 

w
L

M
R Rd

m 
8

 (3.19) 

where w is the width and L is the length, which means in order to acquire the 

maximum resistance Rm the moment capacity MRd must first be determined. For a 

doubly reinforced concrete beam the moment capacity can be derived from the model 

of the cross-section seen in Figure 3.4. 
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As’ 

εs’ 
Fs’ 

d' 

 

Figure 3.4. Model for moment capacity for a doubly reinforced concrete beam. 

As seen in Figure 3.4 the height of the compressed zone x can be determined by force 

equilibrium: 

0''8.0  sssscd AAwxf   (3.20) 

where the top reinforcement is still assumed to be in tension so the term As’·σs’ 

becomes negative for this beam, see Figure 3.5. 



 
47 

 

w 

As 

x 

d 

c 

εcu 

εs 
d-x 

x 
fcd 

0.4x 
Fc+Fs’ 

z = d – 0.4x 

z MRd 

d' 
As’ εs’ 

d' 

d'-x 

 

Figure 3.5. Actual strain for the beam. 

It is also assumed that the steel in both top and bottom reinforcement yields while the 

outmost fibres in the upper part of the concrete reach its ultimate compressive strain. 

This means that σs and σs' is set to the designing yield strength fyd. 

Solving Equation (3.20) for x gives the height of the compressed zone: 

mm 26x  (3.21) 

A control of the assumption is done: 
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When solving the moment equilibrium around the bottom reinforcement the moment 

capacity is given as 

kNm 9.46)50150(500523)264.0150(1000268.0
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 (3.24) 

Finally the maximum internal resistance can be calculated as 
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3.2.3 Deformation  

With the equivalent mass, stiffness and internal resistance calculated, the maximum 

deformations can now be calculated. Using Equation (3.1), the maximum deformation 

for elastic stadium I and II are calculated, respectively, as 
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From Equation (3.2) the maximum plastic deformation is calculated: 
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For elasto-plastic behaviour the deformation is subdivided in elastic and plastic 

deformation as seen in Equation (3.3). By inserting known values in this equation the 

maximum elasto-plastic deformation can be determined as 
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where the elastic part of the deformation is 
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and therefore the plastic part is given by 

mm 6.258.234.49,,  elepepplep uuu  
(3.31) 

 

3.2.4 Equivalent static loads 

In Section 2.3.4 it was shown how dynamic loads can be translated into equivalent 

static loads, and thus, the dynamic reactions can be calculated when maximum 

deflection occurs. From Equation (2.47) the equivalent load for the uncracked case is 

kN 711
1135

1038.6
10000.30.1

7

, 


 kIel IQ  (3.32) 

and for the cracked case 

kN 204
1135

1026.5
10000.30.1

6

, 


IIelQ  (3.33) 

From Equation (2.51) the equivalent load for the plastic case is calculated as 

kN 125 mpl RQ  (3.34) 

 

3.3 ADINA – Methods and modelling 

In this Master thesis the commercial finite element program ADINA (2011) is used 

when performing FE-analyses. In order to help the reader understand the procedures 

when discussing the beam and the results, descriptions about how ADINA works and 

how the beam is modelled in ADINA have been included. This will also help the 

interested to make the calculations with a different finite element program if desired. 
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3.3.1 Methods in ADINA 

To model a simply supported beam for dynamic analyses where the strain is small it is 

beneficial to use beam elements. The beam elements are 2-noded beams with constant 

cross-sections, and comes in two sub-types, namely two-dimensional (2D) and three-

dimensional (3D) beam elements. 3D beam elements use seven integration points 

when calculating the stress distribution over the height of the cross-section, as seen in 

Figure 3.6, and it is in ADINA not possible to choose any other combination. This is 

one of the reasons why it is beneficial to use 2D beam elements in ADINA since it is 

then possible to make a choice of the number of integration points. 

 
 

(a) 

fyd 

fyd 

(b) 

fyd 

fyd fyd 
 

fyd 
 

(c) 

 

Figure 3.6. (a) Expected stress using 7 integration points; actual stress distribution 

using (b) 7 integration points, (c) 3 integration points.  

If one for a 2D beam element chooses three integration points the stress varies linearly 

over the height of the cross-section whilst for the 3D beam elements it varies with a 

6
th 

degree polynomial, resulting in a divergence between the expected stress 

distribution shown in Figure 3.6a and the one used in ADINA, Augustsson and 

Härenstam (2010). However, when only using three integration points one can have 

more control over the calculations. The stress distribution is then known and hence, 

2D beam elements with three integration points are chosen as the elements used in 

this Master thesis. 

There is a second option available but this can only be used when using a linear 

elastic material response. The moments are extracted as nodal forces in ADINA. A 

third option for extracting the moments from ADINA is to extract the stresses. This 

has not been done in this Master thesis but it is discussed in Andersson and 

Karlsson (2012) that it may be beneficial to do so. This is because when studying the 

moment envelope one can see that the yield moment is actually exceeded somewhat, 

even though this should not be possible. However, when extracting the results as 

stresses, this does not occur; the yield moment is never exceeded using this method. 

Why ADINA lets the nodal moment exceed the yield moment is not known but it is 

believed to be the result from numerical errors in the post processing of the results. 

This is not further investigated as the yield moment is not exceeded by much. 

However, because of this the figures of moment envelopes with plastic and elasto-

plastic material response will be modified so that the yield moment is never exceeded. 

When solving dynamic problems in ADINA with the direct integration method one 

can choose between two different integration schemes. One can either solve the 

system using an implicit or an explicit integration scheme. In the implicit solution 

method ADINA uses Newmark’s constant-average-acceleration method (commonly 

known as the trapezoidal rule), where the parameters δ and α from the Newmark 
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method are set to 0.5 and 0.25, respectively. For the explicit solution method the 

central difference method, described in Appendix A, is used. This is a special case of 

the Newmark method with the parameters δ and α set to 0.5 and 0, respectively. The 

central difference method is a fast and efficient solving method but it is only 

conditionally stable, meaning it requires a time step Δt smaller than a critical time step 

Δtcr to give accurate results, Bathe (1996). If the time steps are too large, though, the 

method will be unstable, meaning that the result will become incorrect. When solving 

problems regarding explosions the time steps will be very small in order to describe 

the motion accurately, since the duration of the pressure increase is so short, and 

therefore the central difference method can be effectively used even in complex 

analyses. According to Bathe (1996), the central difference method is mainly used 

when a lumped matrix can be assumed and when the velocity-dependent damping is 

neglectable. The solutions for a linearly elastic beam using both the implicit and 

explicit solution methods as well as a hand calculation are compared in Figure 3.7. 

 

 

Figure 3.7 Comparison between implicit and explicit analysis in ADINA and the 

hand calculation. 

As can be seen from the figure, the implicit solution agrees well with the hand 

calculation while the explicit solution differs from the implicit in both amplitude and 

frequency. This is probably because the explicit solution uses a lumped mass matrix 

while in the implicit method a consistent mass matrix is used, ADINA (2011). The 

phase difference may depend on the fact that the angular frequency will change with a 

modification of the mass, see Equation (2.37). 

Since the central difference method is a very good method when using lumped mass, 

the method is preferable for the SDOF-model. This means that even though the beam 

will be modelled with an explicit method for the SDOF-model, the FE-analysis will 

be performed with the implicit method. The FE-analysis will also be performed with a 

mode superposition-analysis which will be dealt with in Section 5.1. 
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3.3.2 Modelling in ADINA 

Due to the fact that ADINA gives an incorrect stress distribution when using 3D-

elements, see Section 3.3.1, the beam has been modelled with 30 rectangular 2D 

beam-elements and meshed with two nodes per element. To capture the different 

material behaviours described in Section 2.2 the elements are modelled either with 

elastic isotropic or plastic bi-linear materials. Since ADINA cannot easily handle the 

cracks in the elastic stadium II response an equivalent Young’s modulus is acquired 

by multiplying the Young’s modulus with the ratio between the moments of inertia 

from Equation (3.12) and (3.16): 

GPa 72.233
108.6

106.5
8

7





 I

I

II
II E

I

I
E  (3.35) 

Further, ADINA cannot handle an ideal plastic material; therefore these elements are 

modelled with a bi-linear material with very high initial stiffness: 

GPa 3300100  Ipl EE  (3.36) 

and yield limit as follows: 
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When modelling the plastic material in this way the wave speed will be changed, due 

to the high Young’s modulus, and problems will occur. These problems will however 

not be of great impact for this Master thesis and is therefore neglected. This has been 

investigated in a previous Master thesis and the interested reader is referred to 

Andersson and Karlsson (2012). In the elasto-plastic analysis the equivalent Young´s 

modulus EII, Equation (3.35), is used together with the yield limit fyd, Equation (3.37). 

Thus, using equivalent values on EII and fyd it is possible to simulate the correct 

mechanical properties of the reinforced concrete beam. 

The modelled force acting on the beam is a distributed line load that goes from zero to 

Ppeak,n in 0.01 ms, and then subsides linearly until the time tn where the pressure 

becomes zero, see Figure 3.3. The modelled force is an attempt to imitate load case 1. 

The reason for the linearly increasing pressure with one time step of 0.01 ms is 

because ADINA cannot deal with an increase from zero to Ppeak in no time without 

cutting the top values. 

It is very important that the right time increments are chosen so that the characteristics 

of the load are implemented properly, as this is easily missed. If the time increments 

are too large or not adjusted to synchronise with Ppeak, ADINA will assume a lower 

load, i.e. it is important that the time step is adjusted to Ppeak or vice versa. This is 

shown in Figure 3.8 where Load 1 is the sought load and Load 2 is the, by ADINA, 

wrongfully assumed load due to too large time increments. 
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t
 

P 

Ppeak, 1 

Ppeak, 2 

t1 7t1 3t2 tend t2 

Load 1 

Load 2 

0  

Figure 3.8. Assumed loads in ADINA depending on size of time increments. 

The beam is modelled as a simply supported beam and is restricted to move in the x-

direction at one of the supports. Remember that even though the beam often is 

referred to as a horizontal beam it may as well be part of a wall and thus vertically 

situated and horizontally loaded. 

 

 

y 

x 

 

Figure 3.9. Boundary conditions for the studied beam. 
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4 Initial analyses and verification of the modelling 

To present an overall picture of the structural response due to a dynamic load, 

analyses of the beam from the previous section is made in this section. This is done 

with regard to the three material responses: elastic, plastic and elasto-plastic material 

response. The analyses are also made in order to verify the material responses 

described in Chapter 2, and they are made in three steps: Displacement, moment and 

energy balance. 

 

4.1 Displacement 

By comparing the displacements to the maximum deformation capacity it is possible 

to determine which material response the beam will take on for a specific load case, 

and ultimately if it will be able to resist an explosion. The displacements are 

calculated and compared for the beam described in Chapter 3. 

The deformations from different solution methods are compared for the four different 

material behaviours so that the accuracy of the SDOF-method can be evaluated. It is 

important to find how well the SDOF-solution correlates with the corresponding FE-

solution. 

Firstly, the midpoint displacement is plotted. The system point in the SDOF-model is 

situated in the middle of the beam, thus will the SDOF-analysis also refer to the 

midpoint. Secondly, the deformation shapes from the FE-analysis are plotted to see if 

the transformation factors used in the SDOF-analysis are obtained from a correct 

assumption of the actual deformation shape. 

 

4.1.1 Elastic response 

In the analysis for linear elastic stadium I it can be seen that the SDOF-analysis 

correlates very well with both the FE-analysis from ADINA and the hand calculations 

made in Section 3.2.3, see Figure 4.1. The hand calculations, which are theoretical 

maximum values of the displacement, will generally give higher results compared to 

the more exact solution because they are derived using the simplification that the 

impulse load is equivalent to a characteristic impulse load. 
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Figure 4.1 Midpoint displacement for elastic stadium I material response. 

Similar to stadium I the maximum displacement in elastic stadium II correlates well 

between the FE- and SDOF-solution and the hand calculations, but there is a noticable 

difference in the two numerical solutions, see Figure 4.2. While the SDOF-solution 

has a smoothe curve the FE-solution shows a somewhat irregular pattern. This is 

because the FE-model considers several bending modes while the simplified SDOF-

model only uses the fundamental, first, bending mode. 

 

 

Figure 4.2 Midpoint displacement for elastic stadium II material response. 

It can also be seen that the amplitude of the oscillations in stadium II are higher but 

the frequency is lower than in stadium I, which is due to the decreased stiffness in the 

cracked concrete. This once again depends on the important relation in 

Equation (2.37). 

By looking at the elastic deformation shapes for different time steps plotted in 

Figure 4.3 and Figure 4.4 it is clear that several different transformation factors are 

-15

-10

-5

0

5

10

15

0 15 30 45 60 75 90 105 120 135 150

D
is

p
la

ce
m

en
t,

 u
 [

m
m

]

Time, t [ms]

Displacement

Hand

FE

SDOF

-60

-40

-20

0

20

40

60

0 15 30 45 60 75 90 105 120 135 150

D
is

p
la

ce
m

en
t,

 u
[m

m
]

Time, t [ms]

Displacement

Hand

FE

SDOF



 
55 

required to accurately describe the deformation shape of the beam. In the beginning it 

appears like the beam has a rigid body motion. It is not until after about two ms that 

the deformation shape resembles the assumed shape for stadium I, and more than 

five ms for stadium II. The interesting thing is to look at the deformation shape for the 

first five ms where it differs in time; after this the shape will look the same but with 

larger deflection. This development of deformation shapes in time is seen for all types 

of cross-sections, different stiffness for the beam and for larger or smaller loads. It is 

only the deformation magnitude and the occurence in time that is different.  

 

 

Figure 4.3 Deformation shapes at different time steps for elastic stadium I material 

response. 

 

 

Figure 4.4 Deformation shapes at different time steps for elastic stadium II 

material response. 
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To give a better picture of how the deformation shape differs with time from that of a 

rigid body motion, the deformation shapes at different time steps are plotted against 

the corresponding rigid body motion in Figure 4.5. Initially the beam moves like a 

rigid body, but it appears as if vertical waves propagate from the ends of the beam, 

causing parts of the beam to deflect faster than with the rigid body motion. While the 

wave propagation becomes clearer with time, the midpoint displacements follow the 

rigid body motion, but after about 3 and 4 ms the two waves meet and the midpoint 

starts to deflect faster. Why this phenomenon occurs is not fully understood but a 

connection between the wave propagation in the beam and the duration of the effect 

can be seen. 

 

 

Figure 4.5 Deformation shapes at different time steps for elastic stadium II 

material response compared to the corresponding rigid body motion. 

 

4.1.2 Plastic response 

In the plastic analysis there is a significant difference between the three solution 

methods, see Figure 4.6. As for the elastic case, the hand calculations are derived 

from the assumption of the characteristic impulse load which explains the gap 

between the hand calculation and the SDOF-results. The reason why the plastic 

SDOF-solution differs from that of the FE-solution is believed to be because the 

assumed deformation shape in the SDOF-model differs from the one obtained in the 

FE-analysis. In the SDOF-model the transformation factor is set constant and will 

always be underestimated, which leads to overestimated displacements. Also, because 

the beam is first modelled with an elastic material response with very high stiffness, 

the celerity of the waves will be 10 times higher which will affect the FE-solution but 

not the SDOF-solution. 
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Figure 4.6 Midpoint displacement for plastic material response. 

In Figure 4.7 the plastic deformation shape is plotted from 3 to 11 ms to show when 

the plastic hinge develops. It can be seen that the deformation shape starts out as a 

rigid body motion for the middle of the beam while the beam ends are prohibited to 

move. This shape is seen for different load cases but the length of the part that moves 

like a rigid body is shorter for less impulsive loads. As the beam proceeds to deflect 

further, the strained ends become longer while the almost uncurved part in the middle 

becomes shorter. As the middle part is decreasing, a concentrated plastic hinge 

becomes more prominent. It is not until after 11 ms that the deformation shape is 

similar to the assumed shape shown in Figure 2.11. 

 

 

Figure 4.7 Deformation shapes at different time steps for plastic material response. 
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4.1.3 Elasto-plastic response 

The elasto-plastic material behaviour is the one that best describes the true response of 

the concrete beam. Both the SDOF- and FE-model are modelled so that the beam acts 

as an elastic material until the yield limit is reached and the yielding starts. However, 

the beam will revert to elastic oscillations, and because the beam has yielded some it 

will oscillate about a position different from the initial position. 

Since the SDOF-model is based on assumptions of the deformation shape, it is 

important to find one that corresponds well to the actual shape. To find the best 

corresponding deformation shape of the elasto-plastic behaviour in the SDOF-model 

it is modelled for three different cases. In the first and second case it is assumed to 

have elastic and plastic deformation respectively by setting the transformation factors 

to the ones used for linear elastic or ideal plastic behaviour. In the third case the 

elasto-plastic deformations are modelled by using transformation factors for linear 

elastic behaviour until the beam starts to yield, then switches to transformation factors 

for ideal plastic behaviour. Even for the best estimation of the deformation shape in 

the SDOF-model its solution still significantly differs from the FE-solution, see 

Figure 4.8.  

 

 

Figure 4.8 Midpoint displacement for elasto-plastic material response. 

The difference between the FE- and SDOF-solution arises mainly when the 

assumption of the deformation shape is not good enough. It can also be mentioned 

that the agreement between the FE-solution and the hand calculation is a coincidence. 

In previous Master theses, though, a divergence has been seen. 

It can be seen in Figure 4.8 that when using only plastic transformation factors the 

SDOF-analysis initially resembles the FE-analysis best and the top values are just 

slightly higher. However, since the frequency is higher for the SDOF-solution it will 

eventually get out of phase. If modelled with only elastic transformation factors, the 

SDOF-analysis has almost the same frequency as the FE-analysis but the top values 

differ about ten percent. For the third case where the transformation factors are mixed 

the worst correlation is achieved, even though this in theory should give the best 

correlation. This was also shown by Andersson and Karlsson (2012) where the 
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differences are believed to come from the synergy of different errors. However, it was 

shown by Andersson and Karlsson (2012) that when varying the transformation 

factors in time with transformation factors retrieved from the FE-analysis at several 

time steps the SDOF- and FE-solutions correlate very well. This method has not been 

further used here. 

The deformation shape for the elasto-plastic material behaviour will initially be the 

same as for an elastic beam, see Figure 4.4. The deformation shape is plotted up to 

60 ms when the yielding has begun, see Figure 4.9. The displacements of the beam 

are plotted as solid lines while it is still moving downward, but after 21 ms when it 

turns back up the displacements are plotted with dashed lines until the beam 

eventually stops at about 60 ms. It can also be seen for the different time steps how 

the plastic hinge is formed in the middle and after about 60 ms the deformation shape 

resembles the assumed plastic deformation shape. 

 

 

Figure 4.9 Deformation shapes at different time steps for elasto-plastic material 

response. 

 

4.2 Moment 

The moment is often crucial when designing beams, and therefore it is important to 

study how it varies over the beam with time for dynamic loads. For an elastic material 

response the moment is often the designing factor. In theory, the moment can be 

infinitely high but in reality the response will be limited. When studying the plastic 

and elasto-plastic material response the moment is limited by the yield moment. When 

the yield moment is reached the beam will start to yield and it is necessary to design 

such beams with regard to plastic deformation capacity. To show this, the beam from 

Chapter 3 has been analysed. The elastic response will from hereon be represented 

only by stadium II, since this better correspond to the possible response of a 

reinforced concrete beam. 

To find the location on the beam where the time dependent moments are critical, a 

moment envelope will be made and compared to the equivalent static load. A moment 
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envelope is a moment distribution where the maximum value in the time history is 

saved for each node in the beam. The equivalent static load is calculated from the 

dynamic response from the explosion. 

The moment distribution for the equivalent static load is expressed by 

)(
2

)(
2

L

x
x

Q
xM   (4.1) 

where x is the location on the beam and Q is the equivalent static load. 

 

4.2.1 Elastic response 

The moment distribution for a simply supported beam subjected to an impulse load 

initially differs a lot from that of a static load for elastic materials. As was seen for the 

deformation shapes in Section 4.1.1 the moment distribution also varies significantly 

with time. This is no coincidence, as the moment is directly related to the 

deformation, or rather to the curvature of the beam. The moment distribution over the 

beam is plotted for different time steps in Figure 4.10, and it can be seen that the 

moments appear to progress from the beam edges like waves through the beam. 

Between 1 and 5 ms the moments are about 10 to 30 kNm close to the edges and 

either 0 kNm or slightly negative in the middle. After 5 ms the moments near the 

supports are decreasing and the moment in the middle is increasing. 

 

 

Figure 4.10 Moment distribution at different time steps for elastic stadium II 

material response. 

Using Equation (2.47) from Section 2.3.4.1 the equivalent static load for elastic 

stadium II is calculated as 
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When inserting Equation (4.2) in (4.1), the maximum equivalent moment is given as 

kNm 6.76max M  (4.3) 

The moment envelope from the FE-analysis has been calculated and plotted against 

the moment distribution for the equivalent static load, see Figure 4.11. It is seen that 

the equivalent static load underestimates the maximum moment in every node along 

the beam, especially in the middle where the difference is about 30 percent. The 

simple hand calculation for an equivalent static load is a fast way to get an indication 

of the maximum load but it misses crucial information about the moment distribution 

that can be important in design. It is also worth noticing that the moment envelope in 

Figure 4.11 resembles the shape from the maximum moment for all times from 

Figure 4.10, but consists of moment distributions from more times. 

 

 

Figure 4.11 Moment envelope and moment from the equivalent static load for the 

elastic stadium II material response. 

To investigate why the difference in maximum moments is of this magnitude, the 

midpoint moment is plotted over time, together with the maximum positive and 

negative moments from the equivalent static load, as seen in Figure 4.12. It appears as 

if the moment varies with minor oscillations about a major oscillation with a period of 

about 90 ms. The midpoint moment is influenced by more modes than the midpoint 

displacement. This can be seen when comparing Figure 4.2 with Figure 4.12. The 

displacement is basically only one sinusoidal function while the moment has more 

irregularities. It can also be seen that the maximum and minimum moments, are about 

the same but with different signs, and they are repeated for the next oscillations. If 

there would have been no minor oscillations but only the major oscillation the 

midpoint moment would probably not exceed that of the equivalent static load. The 

reader is also reminded that these results are from a model without damping and for a 

realistic case the oscillations would decrease with time and the minor oscillations 

could be much smaller even in an early stage. This is further studied in Section 5.2. 
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Figure 4.12 Midpoint moment for the elastic stadium II material response. 

 

4.2.2 Plastic response 

When considering the plastic response, the beam behaves in a different way in 

comparison to the elastic analysis. In the plastic analysis the beam has a much more 

predictable moment distribution over time. For an ideal plastic beam, the maximum 

moment will be reached instantly across the whole beam, then gradually decrease 

inward. A plastic hinge will develop in the middle of the beam with time, as the outer 

parts get strained. In the FE-analysis, though, the material is modelled as partially 

elastic and will therefore strain earlier. The yield moment is in Section 3.2.2 

calculated to 46.9 kNm and in Figure 4.13 it is seen that the moment never exceeds 

this value. At 1 ms the region with maximum moment is about 60 percent of the beam 

length, at 5 ms it is about 25 percent of the length and at 9 ms it is less than 10 percent 

of the length. 
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Figure 4.13 Moment distribution at different time steps for the plastic material 

response. 

The moment envelope is plotted against the moment from the equivalent static load, 

see Figure 4.14. It is seen that the static load will underestimate the moment for large 

parts of the beam. The yield moment will be reached for almost the entire beam at 

some point, even close to the supports. Nevertheless, the maximum absolute moment 

in the midpoint is well described by the equivalent static load since it is easy to 

determine the yield moment. 

 

 

Figure 4.14 Moment envelope and moment from the equivalent static load for the 

plastic material response. 

Now when the moment envelope has been studied it can be a good idea to study the 

plastic strain. Since almost the entire beam has reached the yield moment at one time 
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the beam will start to develop its strain in the middle of the beam. After 

approximately 30 ms the strain will be fully developed. 

 

 

Figure 4.15 Plastic strain for the plastic material response. 

When the midpoint moment is plotted for the plastic response, see Figure 4.16, 

peculiar oscillations start to occur after about 23 ms, i.e. same time as the maximum 

deformation is reached, see Figure 4.6. The anticipated response is what the first 23 

ms shows. The oscillations after that are believed to be a result of elastic oscillations 

which will not occur in an ideal plastic material. ADINA does not model the plastic 

response in a correct way, but when only considering the first 23 ms the response is 

well defined. 

 

 

Figure 4.16 Midpoint moment for the plastic material response. 
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4.2.3 Elasto-plastic response 

When studying the results from the elasto-plastic analysis one can see that this 

response is very similar to the elastic response, compare Figure 4.10 and Figure 4.17. 

During the first 7 ms the two responses are almost identical and it is not until after 

9 ms a noticeable deviation occurs. With an elastic response there is no yield moment, 

and hence, the beam will be able to withstand an infinitely large moment while a 

beam with an elasto-plastic response will yield in the same manner as for the plastic 

response when the yield moment of 46.9 kNm is reached. The yield moment is 

46.9 kNm, as shown in Section 3.2.2. This simplified response is the one closest to the 

real response for a concrete beam. 

 

 

Figure 4.17 Moment distribution at different time steps for the elasto-plastic 

material response. 

When the yield moment is reached a plastic hinge is created in the mid span. This can 

be seen very clearly when plotting the plastic strain, see Figure 4.18. At 40 ms the 

plastic strain is fully developed for the elasto-plastic material response. The strain has 

approximately the same vale as for the plastic response. A significant difference, 

though, is that the area of plastic strain is much wider for the plastic response 

compared to the elasto-plastic. 
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Figure 4.18 Plastic strain for the elasto-plastic material response. 

When plotting the moment envelope for the elasto-plastic response together with the 

equivalent static response, Figure 4.19, one can see that the moment response is 

similar to that from the plastic response. This is also due to the fact that the moment 

cannot increase when the yield moment is reached. However, there is a deviation 

between the plastic and the elasto-plastic response and it is the length of the region 

where the yield moment has been reached. Since the elasto-plastic response has an 

elastic part which can absorb energy, the length of the area where the yield moment is 

reached is smaller than for the plastic case. However, this can still be a problem for 

occasions with curtailment (shortening of reinforcement) of the beam. If the moment 

capacity is exceeded the reinforcement will yield and can eventually brake. This is a 

topic in structural response with regard to explosions that have not been studied 

thoroughly, but in Section 0 a study has been made for this problem.  

Once again the equivalent static load response is insufficient for large parts but is well 

defined in the mid span. Same as for the plastic envelope, the results from ADINA 

sometimes presented moments that slightly exceeded the yield moment which is not 

possible, and were therefore not accounted for. 
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Figure 4.19 Moment envelope and moment from the equivalent static load for the 

elasto-plastic material response. 

Figure 4.20 clearly shows the elasto-plastic response for the midpoint moment. This is 

a typical behaviour for an elasto-plastic material. When the beam is struck by the 

shock wave from an explosion the moment in the midpoint will increase until the 

yield moment is reached and a part of the beam will yield. When the beam swings 

back, enough energy has been absorbed for the beam to only just reach the yield 

moment. Due to some minor oscillations there are two peaks which almost reach the 

yield moment 46.9 kNm. 

 

 

Figure 4.20 Midpoint moment for the elasto-plastic material response. 
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4.3 Energy balance 

It is often beneficial, and sometimes necessary, to think in terms of energy balance 

when dealing with the structural response from an explosion. This is also another 

approach in checking the correspondence between the SDOF- and the FE-solution. 

The structural response has a direct relationship with the energy put into the system, 

the external energy We. Thus, the response can often be determined from simple 

calculations. As seen in Section 2.3.3 the external energy applied should be equal to 

the sum of internal energy, Wi, and kinetic energy, Wk, in order to have energy 

equilibrium: 

kie WWW   (4.4) 

When this state of equilibrium is reached the maximum deformation is obtained. The 

external energy is determined from the force times the displacement caused. For the 

FE-analysis this is done by integrating the force in every node and multiplying it with 

the corresponding displacement for every time step, sees Equation (4.5) in Table 4.1. 

Since the forces are extracted from nodes in the FE-analysis, the classic integration 

cannot be made, but it is accomplished by taking the sum of the force times the 

displacement in every node for every time step. For the SDOF-model the same 

procedure is used but then only for the system point. 

It is somewhat more difficult to comprehend the calculations for the internal energy in 

the FE-analysis, but it can be explained as the energy needed to bend the beam. The 

internal energy is calculated by taking half of the integral of the moment times the 

change in rotation, the curvature, according to Equation (4.6). According to 

Appendix A, the curvature is the second derivative of the displacement. For the 

SDOF-model the internal energy is simpler to determine as the inner resistance times 

the corresponding displacement for all time steps. 

Finally the kinetic energy is calculated by taking half of the integral of the mass times 

the square of the velocity for the elements in the FE-analysis, see Equation (4.7). For 

the SDOF-model the same equation is used. Equations (4.5) to (4.7) are gathered in 

Table 4.1. 
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Table 4.1. Definition of work for the FE-analysis and the SDOF-model 

respectively. 

 FE-analysis SDOF-model  

External energy 






Lx

x

e dxxuxqW
0

)()(  
sFe FuW   (4.5) 

Internal energy 

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
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x
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sFi RuW   (4.6) 

Kinetic energy dx
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2
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sm
k

mv
W


  (4.7) 

When deriving the energy from the SDOF-system it is important to keep in mind that 

the energy is proportional to 

m

FW


 2

  (4.8) 

whilst the displacement is proportional to 

m

Fu



  (4.9)  

This is of matter when scaling the transformation factors with a factor . In that case 

the energy level can become higher whilst the deformation stays the same: 
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(4.11) 

It is now of interest to compare the energy balance for the FE-analysis with the 

SDOF-model and the hand calculations. This is once again done for the three different 

ideal materials, the elastic, plastic and elasto-plastic material response. The elastic 

response will be represented by stadium II. With the comparison between material 

responses the reader can get an indication of the accuracy of the SDOF-model and the 

hand calculations and if the energy balance is achieved for the two analyses. It is also 

of interest to see how the structure absorbs the external energy throughout the time 

span. 
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4.3.1 Elastic response 

The hand calculation for the energy, which is the theoretical maximum energy, is 

made according to Section 2.4.3. When the force from the pressure hits the beam its 

kinetic energy will increase rapidly. When calculating the theoretical maximum 

energy it is assumed that all of the external energy is transferred into kinetic energy, 

hence will the energy level for the elastic stadium II analysis be calculated as 

J253864.0
1440788.02

3000

2

22




 F

mF

k
ke

m

I
WW 


 (4.12) 

As can be seen in Figure 4.21 the energy balance for the FE-analysis is satisfyingly 

met. The energy put into the system is in equilibrium with the energy used, as 

anticipated. The hand calculation, though, is not fully corresponding with the FE-

analysis. This can be explained by the transformation factors. In a previous Master 

thesis by Andersson and Karlsson (2012) it is shown that the hand calculation better 

corresponds to the FE-analysis when the impulse load is less intense, i.e. behaves 

more like a static load. The agreement between the FE-analysis and the hand 

calculation decreases for a very impulsive load. The transformation factors are 

derived from the deflection of a beam when loaded statically; the closer the deflection 

of the actual beam is to a statically loaded beam, the better the correspondence. 

 

 

Figure 4.21. The energy balance for the FE-analysis and the hand calculation for the 

elastic stadium II material response. 

The agreement between the SDOF-model and hand calculation is very good, but most 

important is to have good correspondence between the SDOF-model and the FE-

analysis. In this case the SDOF-model gives energy levels on the unsafe side, which is 

unwanted, see Figure 4.22. The same source of error applies here, the divergence is 

due to the transformation factors and the errors are incorporated when using a static 

deformation shape. The discrepancy in energy levels are however relatively close and 

can be acceptable. 
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Figure 4.22. The energy balance for the SDOF-model and the hand calculation with 

the elastic stadium II material response. 

Both for the FE-analysis and the SDOF-model the response of the beam will alternate 

between fully developed kinetic energy and then fully developed internal resistance. 

This is a typical response for an ideal elastic material when the beam sways back and 

forth. Furthermore, the energies in the SDOF-model are smoother than the energies 

from the FE-analysis. As was mentioned in Section 4.1.1, this is due to the fact that 

the SDOF-model only takes the first bending mode for the beam into account whilst 

the FE-analysis takes more modes into account. 

 

4.3.2 Plastic response 

In plastic analysis the transformation factors are determined based on an appearance 

according to Figure 2.11. A hand calculation of the energy for the plastic response is 

made with the new transformation factors: 

J23435.0
1440667.02

30002
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When comparing the FE-analysis, Figure 4.23, with the SDOF-model for the plastic 

response, Figure 4.24, the agreement is very good. The SDOF-model gives an energy 

level just below the FE-analysis. The relative error, ξ, is calculated as 
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The main reason for the deviation between FE-analysis and the theoretical maximum 

energy calculated by hand is believed to be because there are differences in the 

transformation factors. As can be seen in Figure 4.23, the kinetic energy Wk is not 

fully developed within the first 4 ms because the external energy We is still increasing. 

 

 

Figure 4.23. The energy balance for the FE-analysis and the hand calculation with 

plastic material response. 

 

 

Figure 4.24. The energy balance for the SDOF-model and the hand calculation with 

plastic material response. 

Because the stiffness is high for the plastic material response, the internal energy will 

increase early, thus, in order to maintain energy equilibrium, the kinetic energy must 

be low. The beam does not sway back and forth as for an elastic response. The beam 
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yields and the beam’s way to absorb the external energy is through internal resistance, 

hence the low kinetic energy and high internal energy. 

An interesting observation is that although the energy level is lower for the SDOF-

model compared to the FE-analysis it is in reversed order for the displacement, see 

Figure 4.6. This occurs because of the relationships between the transformation factor 

and the energy and the displacement respectively, as mentioned earlier, Equation (4.8) 

to (4.11). 

 

4.3.3 Elasto-plastic response 

As mentioned in Section 2.4.2, there are no special elasto-plastic transformation 

factors. Instead, usage of either the elastic, plastic or both transformation factors are 

made. The theoretical maximum value of energy is calculated with either 

Equation (4.12) or Equation (4.13) as can be seen in Figure 4.25 for the FE-analysis. 

Here it is clear that the elastic transformation factors give better correspondence with 

the FE-analysis. 

 

 

Figure 4.25. The energy balance for the FE-analysis and the hand calculation with 

elasto-plastic material response. 

When studying the SDOF-model and using constant transformation factors, there are 

three different cases that are of interest. The SDOF-model is either modelled with 

only elastic transformation factors, only plastic transformation factors or a 

combination of them both. All three cases will present lower energies than the FE-

analysis. In Figure 4.26 the SDOF-model has been modelled with the elastic 

transformation factors. This gives a fairly good agreement between the FE-analysis 

and the SDOF-model. 
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Figure 4.26. The energy balance for the SDOF-model and the hand calculation with 

elasto-plastic material response and elastic transformation factors. 

In Figure 4.27 the plastic transformation factors have been used. This results in less 

agreement with the FE-analysis than from the case with elastic transformation factors, 

the energy level is decreased. 

 

 

Figure 4.27. The energy balance for the SDOF-model and the hand calculation with 

elasto-plastic material response and plastic transformation factors. 

The third option is shown in Figure 4.28 where the transformation factors change 

when the yield limit is reached. First the elastic factor is used when the beam is in its 

elastic stadium. When the force has increased enough the beam will start to yield and 

the plastic factor is used. In contrary to the first two cases, this will result in an 

unbalanced energy and the agreement with the FE-analysis is less than with only 

plastic transformation factors. In order to achieve good correspondence between the 

SDOF- and the FE-analysis it is necessary to use transformation factors that vary in 
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time to give a better assumption of the deformation shape. This is not studied in this 

Master thesis but it has been shown successfully in Andersson and Karlsson (2012).  

 

 

Figure 4.28. The energy balance for the SDOF-model and the hand calculation with 

elasto-plastic material response and both elastic and plastic 

transformation factors. 

 

4.4 Discussion 

The results from the displacement analysis indicate that the SDOF-model very well 

describes the midpoint displacement when an elastic material response is applicable. 

The hand calculation is a good method to quickly determine the maximum 

displacements which also correspond well to the FE-analysis. With an elastic response 

the deformation shape will be easier to approximate with the transformation factors. 

However, when the plastic- and elasto-plastic material response applies the agreement 

will be worse between the SDOF-model and the FE-model. This is believed to depend 

on the fact that the deformation shapes are difficult to describe with constant 

transformation factors. In the beginning the beam appears to have a rigid body 

motion, which does not fulfil the assumed deformation shape. It is concluded that 

several transformation factors are needed to describe the deformation of the beam if 

an almost exact approximation is wanted, when a plastic- or elasto-plastic material 

response is used. If one can tolerate some divergence, the SDOF-model can be used 

when the plastic transformation factor is used for the elasto-plastic case. The reason 

why the SDOF-model with plastic transformation factors gives such a good result, 

though, is unknown. 

The most important aspect with regard to the moment is that the moment calculated 

from the equivalent static load underestimates the moments from the FE-analysis in 

all nodes. This can be of concern when other materials than reinforced concrete is 

used. A reinforced concrete beam is able to redistribute the forces in a beneficial way 

but for e.g. a timber structure the arising moments may very well lead to failure. 

Another interesting aspect with regard to the moment is that the moment is relatively 
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large close to the supports the first few ms. This raises the question about curtailment. 

The Swedish “Fortifikationsverket” have determined that when designing bomb 

shelters no curtailment is allowed, and when studying the moment development this is 

easy to understand, but what happens when a structure with curtailment is subjected to 

an explosion? This will be investigated in Section 5.3. When it comes to the 

agreement between the SDOF- and the FE-analysis it is easy to see that the moment is 

more influenced by more bending modes than the displacements. This indicates that 

an SDOF-solution is inadequate when regarding the moment and that a more detailed 

approximation could be relevant. This is studied in Section 5.2. 

When studying the response of a structure subjected to an explosion it is beneficial to 

study the energy acting in the structural system. This will help in order to understand 

the behaviour as the energy put into the system will be in equilibrium with the energy 

consumed. The SDOF-analysis presents reasonable agreement with the FE-analysis 

for all material responses, especially when the elastic transformation factors are used 

for the elasto-plastic behaviour. 

The reader is reminded of that these analyses have been carried out without taking 

regard to the damping of the structure. This means that the real structure will behave 

differently. However, it is important to understand the response without damping 

before analyses are performed with regard to damping. In Section 5.2 the damping 

will be included to the analyses which will make it more realistic. 
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5 Mode superposition and damping 

As mentioned in Section 2.4.1, the deformation shapes of impact loaded structures 

consists of a combination of several bending modes. By using the method of mode 

superposition, which is described in Appendix D, for linear elastic analyses any 

requested number of modes can be conjoined to describe the response of the structure. 

If the structure is complex and/or consists of many parts, an analysis of the structure 

might take a long time, especially if many modes are to be regarded. Because of this, 

it is important to know how to make relevant simplifications that still provide accurate 

results. By investigating which modes have the most influence on the deformation 

shape, a good approximation can be made by modelling the motion with only these 

modes. In that way time can be saved when analysing the structure. However, since 

the structure in this Master thesis is a simply supported beam with relatively few 

nodes, the time saved will be negligible. 

Another important aspect is to try once again to verify the usefulness of the SDOF-

model. Hence, it is investigated whether a single degree of freedom is sufficient to 

describe the motion for an impulse loaded beam or if it is necessary to introduce more 

degrees of freedom to the simplified calculation method. Will it be sufficient in order 

to determine both displacement and moment, with and without damping? In order to 

determine this some guidelines of how big the error can be is used. If the error lies 

within one percent is it a very good approximation and if it lies within five percent is 

it acceptable. 

Since all structures in reality have damping that differs with mode shape it is natural 

to regard the damping while making a mode superposition-analysis. The damping is 

often analysed as Rayleigh damping, described in Appendix E, or modal damping. If 

there is a lot of information about the damping of the structure the modal damping is 

the best choice as it has the possibility to choose specific damping for every mode. 

However, if there is lack of information about the structure, the Rayleigh damping 

might be a better choice as it is more general and usually can be regarded to be on the 

safe side. 

The main reason for analysing the damping is that one can be concerned for the high 

values of the midpoint moment within the first few ms. The FE-analysis, see 

Figure 4.12, has previously shown that the maximum midpoint moment within 15 to 

35 ms is much larger than the equivalent static load, which is more commonly used 

when designing structures. A question needed to be answered is if the damping will 

decrease the midpoint moment enough for the first 35 ms so that the equivalent static 

load will be a satisfactory simplification. 

As an example the beam in Chapter 3 is further analysed with focus on the midpoint 

moment with mode superposition-analysis for an elastic stadium II material response 

and later the damping is analysed. The direct integration analysis will for simplicity 

still be referred to as “FE-analysis” and the mode superposition-analysis, which also is 

a type of FE-analysis, will be referred to as “modal-analysis”. 

 

 



 
78 

5.1 Modal-analysis 

When performing a modal-analysis to study the response in the midpoint of a simply 

supported beam subjected to a distributed load one can exclude the modes that have a 

stationary node in the middle. In this case the aforementioned property exist for every 

even number of modes, see Figure F.1 in Appendix F. Hence, for this analysis only 

the odd numbers of modes will be regarded. The subject of interest is in this analysis 

the agreement between the SDOF-analysis and the modal-analyses with different 

amount of modes compared to the FE-analysis for all time steps. It is not sufficient to 

just have the same maximum value but it is the general agreement with the FE-

analysis that is important. When choosing number of modes to use in ADINA it is 

important to remember that not all modes give a contribution to the midpoint 

moments and displacements, and also that longitudinal modes can be contributed in 

the analysis. 

As can be seen from Figure 5.1, when analysing the midpoint displacement by only 

using the first mode in the modal-analysis, the result will, as expected, be in good 

agreement with the SDOF-solution. The result from using the first three modes is 

improved significantly from the modal-analysis with only one mode, but it will later 

be shown that it is not until the fifth mode that the results are almost identical to the 

FE-analysis. However, the first three included modes in the modal-analysis give a 

very satisfactory approximation to the FE-analysis, even though the second mode 

does not give any contribution. 
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     (a) 

 

     (b) 

Figure 5.1. (a) Modal-analysis for midpoint displacement using one and three 

modes, compared to results from SDOF- and FE-analysis, (b) zoomed 

in. Maximum displacement is about 38 mm. 

The difference between the FE-analysis and the modal-analysis for three, five and 

seven modes is shown in Figure 5.2 and it can be seen that five and seven modes does 

not contribute to a significantly better approximation of the displacement compared to 

an analysis using three modes. The difference is shown between 15 and 35 ms, which 

mean that maybe the largest difference is not shown, but the most relevant are, as the 

difference is shown at and directly about the maximum displacement. The error in 

comparison to the maximum displacement for the FE-analysis, which is 

approximately 38 mm, will be very small for the displacement. Hence, it is for the 

studied beam sufficient to include three modes, and even one mode give a very 

satisfactory result, in a modal-analysis. This is true for the response from load case 1.  

-45

-30

-15

0

15

30

45

0 15 30 45 60 75 90 105 120 135 150

D
is

p
la

ce
m

en
t,

 u
[m

m
]

Time, t [ms]

Mode superposition FE

SDOF

1 mode

3 modes

FE

28

30

32

34

36

38

40

15 17 19 21 23 25 27 29 31 33 35

D
is

p
la

ce
m

en
t,

 u
[m

m
]

Time, t [ms]

Mode superposition FE

SDOF

1 mode

3 modes

FE



 
80 

 

Figure 5.2. Difference between midpoint displacements for modal-analysis with 

three, five and seven modes and the FE-analysis. Maximum 

displacement is about 38 mm, see Figure 5.1. 

A modal-analysis is made for the midpoint moment, in the same way as for the 

midpoint displacement, and is shown in Figure 5.3. It can be seen that the result from 

only using the first mode is far from satisfying. When including mode three the 

correspondence improves significantly. However, when taking a closer look at the 

zoomed in part of Figure 5.3 one can see that not even three modes are completely 

satisfying. Unlike the midpoint displacement the midpoint moment is not thoroughly 

described until the fifth mode is introduced to the modal-analysis when studying the 

figure. From this, it is obvious that the moment is more difficult to describe with 

fewer modes compared to the displacement. This is also to be expected since the 

moment is proportional to the second derivative of the displacement. 

Another interesting point is that the two peaks in Figure 5.3 (b) are centred on the 

highest value for the first mode. If the eigenmodes are excited differently there will be 

a phase shift and it is highly possible that one of the peaks will coincide with the peak 

from the first mode. Because of this it is possible to get a higher maximum moment. 

This is seen in Figure 5.3 (a) at 25 ms and 115 ms. 
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     (a) 

 

     (b) 

Figure 5.3. (a) Modal-analysis for midpoint moment using one, three and five 

modes, compared to results from FE-analysis, (b) zoomed in. The 

maximum moment is about 100 kNm. 

The difference between the modal-analysis and the FE-analysis is also plotted for the 

midpoint moment, see Figure 5.4. The figure resembles the one for the difference in 

displacement, Figure 5.2, but when a comparison of the difference is done with the 

maximum moment one can see that the percentage is of another magnitude. The 

maximum moment for the FE-analysis is approximately 100 kNm which should be 

compared to the difference in Figure 5.4. 
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Figure 5.4. Difference between midpoint moments for modal-analysis with three, 

five and seven modes and the FE-analysis. Maximum moment is about 

100 kNm, see Figure 5.3. 

Figure 5.4 indicates that the difference between three modes and the FE-analysis can 

be as large as eight percent if unlucky. When considering the analysis with five modes 

the difference will most be approximately three percent wrong. 

Since the difference in percentage is larger for the moment than for the displacement 

it is sufficient to include five modes when doing a modal-analysis of this beam. It is 

shown that the difference will not improve significantly when including a seventh 

mode. This is true for both the displacement and the moment. However, so far the 

analyses have only dealt with load case 1, which might be regarded as a fairly gentle 

impulse. As mentioned in section 2.4.1, a more intense impulse will excite higher 

frequencies which can lead to a requirement of more modes to be included to get a 

good agreement between the modal-analysis and the FE-analysis. 

In order to draw conclusions an analysis is made with regard to the more intense load 

case 3, see Figure 3.3 in Section 3.1, and the midpoint displacement can be seen in 

Figure 5.5. 
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     (a) 

 

     (b) 

Figure 5.5. (a) Modal-analysis for midpoint displacement due to LC3 using one, 

three and five modes, compared to results from SDOF- and FE-analysis, 

(b) zoomed in. Maximum displacement is about 39 mm. 

The midpoint displacements that arise when subjected to load case 3, seen in 

Figure 5.5, resemble the displacements for load case 1, seen in Figure 5.1, but there is 

a significant difference. It can be seen that the curve from the modal-analysis using 

three modes does not follow the FE-analysis for load case 3 as smoothly as for load 

case 1, Figure 5.1. To capture a more satisfactory approximation of the FE-analysis 

for the more impulsive load, it appears as if at least five modes are required. To 

present a better picture of the accuracy, the difference between the modal-analysis, 

using three, five and seven modes, and the FE-analysis is shown in Figure 5.6. 
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Figure 5.6. Difference between midpoint displacements due to LC3 for modal-

analysis with three, five and seven modes and the FE-analysis.Maximum 

displacement is about 39 mm, see Figure 5.5. 

With a maximum displacement of about 39 mm, the relative error from only using 

three modes in the modal-analysis is rather big when it peaks around 0.4-0.45 mm. 

However, if the error lies within five percent the approximation is acceptable, as 

mentioned earlier, and when only using three modes it result in an error just over one 

percent. Tough, the accuracy is greatly improved when using five modes, and 

although seven modes give a closer approximation to the FE-analysis the difference is 

still larger than the comparison between the FE-analysis and the modal-analysis using 

only five modes for load case 1, see Figure 5.2. 

Same as for load case 1, an analysis has been made for the midpoint moment for load 

case 3 and is shown in Figure 5.7. By comparing the midpoint moments in Figure 5.7 

and Figure 5.3 it can be seen that the midpoint moment for load case 3 is much more 

influenced by higher modes than the midpoint moment for load case 1. 
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     (a) 

 

     (b) 

Figure 5.7. (a) Modal-analysis for midpoint moment due to LC3 using three, five 

and seven modes, compared to results from FE-analysis, (b) zoomed in. 

Maximum moment is about 125 kNm. 

As can be seen in Figure 5.7, when the impulse load is more intensive the description 

of the moment using five modes is still satisfying, even though the moment appears to 

be worse described than for load case 1. When the impulse is shorter in duration, the 

peaks in the moment oscillation become larger and more frequent, and compared to 

the largest peaks at 100 kNm for load case 1, the largest peaks for load case 3 reaches 

125 kNm, i.e. 25 percent more. This can be compared to the displacement for the two 

load cases where the maximum values are more or less the same. The reason for the 

big increase of midpoint moment, although the displacement stays the same, is that 

the curvature is more significant for the more impulsive load case. The differences 

between the FE-analysis and the modal-analysis using three, five and seven modes are 
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shown in Figure 5.8 to once again give the reader a better picture of the magnitude of 

error attained when not using a sufficient amount of modes. 

 

Figure 5.8. Difference between midpoint moments due to LC3 for modal-analysis 

with three, five and seven modes and the FE-analysis. Maximum 

moment is about 125 kNm, see Figure 5.7. 

Now that the differences have been shown between modal-analysis and FE-analysis 

for the whole time interval and in every time step it is of interest to compare only the 

maximum values for displacement and midpoint moment. This will be an important 

comparison with respect to the design. The comparison is made with regard to both 

the displacement and the moment for load case 1 and 3. Table 5.1 is regarding 

midpoint displacements and  

Table 5.2 is regarding midpoint moments. The relative errors, ξ, are calculated by 

comparing the maximum value during the first oscillation, which lies within 35 ms, 

for the FE-analysis and the different modal-analyses: 
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(5.2)  

where Equation (5.1) and (5.2) regards displacement and moment respectively. Even 

though the maximum displacements are about the same for the two load cases, the 

maximum moments are not. This is partly because a more impulsive load will initiate 

stronger motions of higher modes than a less impulsive load would. It is also because 

a more impulsive load will cause a higher magnitude of curvature which is in direct 

relation to the moment, as shown in Appendix A. It is shown that for a more intense 

load it is necessary to use more modes in the modal-analysis compared to a less 

intense load. It is of interest to point out that the error for the midpoint moment for 

load case 3 using five modes gives a greater error than that for load case 1 by using 

only three modes. Generally, it is easier to describe the displacement than the moment 
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with few modes when performing a modal-analysis. It is seen that either different 

requirements of accuracy can be used for the displacement and the moment, when 

using a specific number of modes, or the moment analysis can be complemented with 

more modes to achieve the same relative error as for the displacement analysis. In 

Section G.1 it is shown that the SDOF-analysis and the modal-analysis with one mode 

also corresponds very well with regard to the midpoint moment. 

Table 5.1. Relative error in maximum midpoint displacement using modal-analysis 

with one, three, five and seven modes for LC1 and LC3. 

Type of 

analysis 

Number of 

modes 

LC1 LC3 

umax [mm] ξ [%] umax [mm] ξ [%] 

FE-analysis ∞ 38.3 - 39.6 - 

SDOF-

analysis 

1 mode 
1) 

38.8 1.3 38.9 -1.8 

Modal-

analysis 

3 modes 38.9 1.6 39.4 -0.5 

Modal-

analysis 

5 modes 39.0 1.7 39.7 -0.2 

Modal-

analysis 

7 modes 39.0 1.8 39.6 0.0 

1) Corresponds well to the modal-analysis with one mode, see Section G.1. 

 

Table 5.2. Relative error in maximal midpoint moment using modal-analysis with 

one, three, five and seven modes for LC1 and LC3. 

Type of 

analysis 

Number of 

modes 

LC1 LC3 

Mmax [kNm] ξ [%] Mmax [kNm] ξ [%] 

FE-analysis ∞ 102.3 - 125.0 - 

SDOF-

analysis 

1 mode 
1)

 76.5 -25.2 76.7 -38.6 

Modal-

analysis 

3 modes 98.5 -3.7 103.1 -17.6 

Modal-

analysis 

5 modes 102.9 0.5 116.7 -6.7 

Modal-

analysis 

7 modes 101.4 -0.9 124.3 -0.6 

1) Corresponds well to the modal-analysis with one mode, see Section G.1. 
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5.2 Damping analysis 

In previous sections the analyses have been made without the effect of damping, 

which occurs in all real structures. Damping is an effect where energy is lost in the 

system through movement, and is in direct relation to the velocity. The energy loss 

arises from when temperature is developed through e.g. mechanical friction, which 

means that the damping also depends on material and shape. It is believed that the 

damping for a beam of the kind in this Master thesis will not exceed 10 percent, which 

is a very strong damping, and it is seen as a limit of how high the damping possibly 

can be. It is more probable that the damping will be of a magnitude of about five 

percent, as seen in Table 5.3, where recommended damping ratios are shown for 

different types and conditions of a structure. 

 

Table 5.3. Recommended damping values, Chopra (2011). 

Stress level Type and condition of 

structure 

Damping ratio 

Working stress, no more 

than about 0.5 yield point 

Welded steel, prestressed concrete, 

well-reinforced concrete (only slight 

cracking) 

2-3% 

 Reinforced concrete with 

considerable cracking 

3-5% 

 Bolted and/or riveted steel, wood 

structures with nailed or bolted joints 

 

5-7% 

At or just below yield 

point 

Welded steel, prestressed concrete 
(without complete loss in prestress) 

5-7% 

 Reinforced concrete, Prestressed 

concrete with no prestress left 
7-10% 

 Bolted and/or riveted steel, wood 

structures with bolted joints 

10-15% 

 Wood structures with nailed joints 15-20% 

Since the damping of the beam in this case cannot be determined experimentally, 

possible damping values are compared for a damping ratio of 1, 2, 5 and 10 percent. 

When using Rayleigh damping the damping matrix is expressed as: 

KMC  

 

(5.3) 

where C, M and K are the damping-, mass- and stiffness matrixes, respectively, and α 

and β are factors determining the mass- and stiffness damping. The α- and β-factors 

are chosen so that the current damping factor affects the first and fifth mode. This 

means that the modes between first and fifth, i.e. second, third and fourth, will be 

affected by lower damping and the higher modes will be more damped, see 

Figure 5.9. 
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Figure 5.9. Rayleigh damping at first and fifth natural frequency for 1, 2, 5 and 10 

percent damping. 

From a frequency-analysis in ADINA the frequencies for the first and fifth mode are 

found. The frequencies are 10.84 Hz and 259.8 Hz, respectively. With these 

frequencies it is now possible to calculate the corresponding α- and β-factors for the 

different damping percentages. Below are the factors calculated for one percent 

Rayleigh damping as an example: 
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(5.5) 

This will then be used to calculate the damping matrix C from equation (5.3) that will 

be used when considering the Rayleigh-damping, both in the SDOF-model and the 

FE-model. 

The α- and β-factors for the different damping values are shown in Table 5.4, and the 

eigenfrequencies and the calculated Rayleigh damping for different damping ratios 

are shown in Table 5.5. 
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Table 5.4. Calculated α- and β-factors for different damping values when using 

Rayleigh damping. 

Damping α β 

1% 0.208 7.39·10
-5 

2% 0.416 14.8·10
-5

 

5% 1.041 36.9·10
-5

 

10% 2.081 73.9·10
-5

 

 

Table 5.5. Frequencies and damping values for the considered bending modes 

when using Rayleigh damping of different magnitudes. 

Bending 

mode 

Eigenfrequency Damping value 

1% 2% 5% 10% 

1  10.84 Hz 1.00% 2.00% 5.00% 10.0% 

3  96.14 Hz 0.46% 0.93% 2.32% 4.63% 

5  259.8 Hz 1.00% 2.00% 5.00% 10.0% 

7  490.0 Hz 1.83% 3.66% 9.16% 18.3% 

 

In Figure 5.10 and Figure 5.11 the response is compared for Rayleigh damping and 

modal damping, respectively. When making an analysis with Rayleigh damping, 

direct integration have been used and in the modal-analysis seven modes have been 

included. 

It can be seen that it is only 10 percent damping for both cases that is sufficient when 

the equivalent static load is concerned. However, the five percent damping, which is 

more reasonable, will also give a satisfactory result. A comparison of the five percent 

Rayleigh and modal damping is therefore shown in Figure 5.12. It is worth 

mentioning that, when comparing the Rayleigh damping with the modal damping, it is 

seen that using Rayleigh damping will damp the minor oscillations more efficiently 

than when modal damping is used. 
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     (a) 

 

     (b) 

Figure 5.10. (a) Undamped midpoint moment compared to midpoint moment with 1, 

2, 5 and 10 percent Rayleigh damping; (b) zoomed in. 
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     (a) 

 

     (b) 

Figure 5.11. (a) Undamped midpoint moment compared to midpoint moment with 1, 

2, 5 and 10 percent modal damping; (b) zoomed in. 

-150

-100

-50

0

50

100

150

0 15 30 45 60 75 90 105 120 135 150

M
o

m
en

t,
 M

[k
N

m
]

Time, t [ms]

Midpoint moment EL II

Max Pos Eq. Static load

Undamped FE-analysis

1% Modal damping

2% Modal damping

5% Modal damping

10% Modal damping

Max Neg Eq. Static load

33

45

57

69

81

93

105

15 17 19 21 23 25 27 29 31 33 35

M
o

m
en

t,
 M

[k
N

m
]

Time, t [ms]

Midpoint moment EL II

Max Pos Eq. Static load

Undamped FE-analysis

1% Modal damping

2% Modal damping

5% Modal damping

10% Modal damping

Max Neg Eq. Static load



 
93 

 

Figure 5.12. Undamped midpoint moment compared to midpoint moment with 5 

percent Rayleigh and modal damping. 

In order to be able to draw conclusions about the damping, an analysis of the moment 

envelope is also made. In Figure 5.13 and Figure 5.14 the moment envelope is shown 

with different degree of Rayleigh damping and modal damping, respectively. 

 

 

Figure 5.13. Undamped moment envelope compared to moment envelope with 1, 2, 5 

and 10 percent Rayleigh damping. 
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Figure 5.14. Undamped moment envelope compared to moment envelope with 1, 2, 5 

and 10 percent modal damping. 

The conclusion that can be drawn from the damping analysis of this particular 

scenario is that to be satisfied with the undamped equivalent static load when 

designing, the actual damping needs to be at least five percent. If that is the case, the 

equivalent static load will explain the behaviour accurately enough and the design will 

be acceptable. It has previously also been shown that it is common for concrete 

structures to have a damping factor of about five percent, see Table 5.3. The reader is 

reminded that these analyses for the damping have been made with the elastic stadium 

II material response. Depending on the situation, e.g. a prestressed concrete beam, this 

might not be the best agreement with a real scenario, with a different material 

response. 

In order to determine how many modes are required to present a good approximation 

of the displacements and moments for the damped case, an analysis according to the 

one in Section 5.1 has been made, but this time with five percent modal damping. The 

displacements over time for load case 1 is shown in Figure 5.15, and it can be seen 

that one mode is a very close approximation. However, in order to capture the motion 

of the minor oscillations three modes are needed. The SDOF-analysis is not shown in 

the figure as it was shown in Figure 5.15 that it is almost identical to the modal-

analysis using only one mode. 
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     (a) 

 

     (b) 

Figure 5.15. (a) Modal-analysis for midpoint displacement using 1, 3, 5 and 25 

modes due to LC1 with 5 percent damping, (b) zoomed in. Maximum 

displacement is about 36 mm. 

To give a perspective of how good approximation it is to use only one mode, the 

difference between the modal-analysis for one, three and five modes and the modal-

analysis for 25 modes is shown in Figure 5.16. Here, analyses using 25 modes are 

regarded as an acceptable approximation for the FE-analysis, see Section G.2. The 

reason to replace the FE-analysis with a modal analysis is to be able to use modal 

damping, i.e. constant damping for all frequencies. Notice that as the displacement 

decreases with time, so do the relative errors. By only using one mode the largest 

errors are about 0.8 mm which is about 2.2 percent of the maximum displacement. 

When three or five modes are used the relative error is below 0.06 percent. 
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Figure 5.16. Difference between midpoint displacements due to LC1 for modal-

analysis with 1, 3 and 5 modes and the modal-analysis with 25 modes; 

all with 5 percent damping. Maximum displacement is about 36 mm, see 

Figure 5.15. 

The midpoint moment is shown in Figure 5.17 for load case 1 with different amount 

of modes. By only using the first mode it is seen that the result differs significantly 

from the modal-analysis using more modes. When three modes are used, one can in 

Figure 5.17 (b) see a slight difference from the modal-analysis using 25 modes, but 

when five modes are used the difference is negligible. 
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     (a) 

 

     (b) 

Figure 5.17. (a) Modal-analysis for midpoint moment using 1, 3, 5 and 25 modes due 

to LC1 with 5 percent damping, (b) zoomed in. Maximum moment is 

about 82 kNm. 

The differences between the damped midpoint moments over time for load case 1 

using modal-analysis with three, five and seven modes and the modal-analysis using 

25 modes are shown in Figure 5.18. As for the displacement, the difference is 

decreasing with time, but the largest errors are much larger. For the modal-analysis 

using three modes the largest error is 1.5 kNm and the relative error is about 1.8 

percent of the maximum moment for the modal-analysis using 25 modes. When using 

five modes the error is still about 0.12 percent which is more than double that of the 

error in displacement using only three modes, but it is still considered as a small error. 
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Figure 5.18. Difference between midpoint moments due to LC1 for modal-analysis 

with 3, 5 and 7 modes and the modal-analysis with 25 modes; all with 5 

percent damping. Maximum moment is about 82 kNm, see Figure 5.17. 

Also for the damping analyses it is interesting to look at the response when the beam 

is subjected to load case 3. In Figure 5.19 and Figure 5.20 the deformation and the 

difference in displacement is shown respectively. When comparing these figures to 

the ones for load case 1, Figure 5.15 and Figure 5.16, the reader can see that the 

difference is almost not visible. 
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     (a) 

 

     (b) 

Figure 5.19. (a) Modal-analysis for midpoint displacement using 1, 3, 5 and 25 

modes due to LC3 with 5 percent damping, (b) zoomed in. Maximum 

displacement is about 36 mm. 
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Figure 5.20. Difference between midpoint displacements due to LC3 for modal-

analysis with 1, 3 and 5 modes and the modal-analysis with 25 modes; 

all with 5 percent damping. Maximum displacement is about 36 mm, see 

Figure 5.19. 

In Figure 5.21 and Figure 5.22 the midpoint moments and the differences are shown 

respectively. When the damping is regarded it is shown that the responses are very 

similar regardless of what type of loading is used. When the beam is subjected to load 

case 3 the response will not be very different compared to the response obtained for 

load case 1. Even the analyses within the different load cases are very similar. It is 

only the SDOF-analysis that differs significantly at the beginning. The curves are 

smoothened due to the damping and the differences are decreasing with time and 

eventually the analyses will merge with each other irrespective of the amount of 

modes in the analyses. 
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     (a) 

 

     (b) 

Figure 5.21. (a) Modal-analysis for midpoint moment using 1, 3, 5, 7 and 25 modes 

due to LC3 with 5 percent damping, (b) zoomed in. Maximum moment is 

about 86 kNm. 

-120

-80

-40

0

40

80

120

0 15 30 45 60 75 90 105 120 135 150

M
o

m
en

t,
 M

 [
k

n
M

]

Time, t [ms]

Mode superposition FE LC3

1 mode

3 modes

5 modes

7 modes

25 modes

50

57

64

71

78

85

92

15 17 19 21 23 25 27 29 31 33 35

M
o

m
en

t,
 M

 [
k

n
M

]

Time, t [ms]

Mode superposition FE LC3

1 mode

3 modes

5 modes

7 modes

25 modes



 
102 

 

Figure 5.22. Difference between midpoint moments due to LC3 for modal-analysis 

with 3, 5 and 7 modes and the modal-analysis with 25 modes; all with 5 

percent damping. Maximum moment is about 86 kNm, see Figure 5.21. 

 

In order to give a more detailed picture of the accuracy of the results when using 

different amount of modes, analogous to Table 5.1 and  

Table 5.2 from Section 5.1, Table 5.6 and Table 5.7 are shown with displacements 

and moments regarding five percent modal damping. It is seen that for both the 

displacement- and moment analysis regarding damping, the relative error for load 

case 1 and 3 is smaller compared to the analyses without damping. The error 

decreases significantly when more modes are used for the analysis, and it is, when 

damping is regarded, only the analysis with one mode that differs noticeably. 
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Table 5.6. Relative error in maximum midpoint displacement using modal-analysis 

with one, three, five and seven modes for LC1 and LC3, regarding 5 % 

damping. 

Type of 

analysis 

Number of modes LC1 LC3 

umax [mm] ξ [%] umax [mm] ξ [%] 

Modal-

analysis 

Max displacement 

(25 modes) 

35.6 - 35.9 - 

SDOF-

analysis 

1 mode 
1)

 35.9 0.8 36.1 0.6 

Modal-

analysis 

3 modes 35.7 0.4 36.0 0.1 

Modal-

analysis 

5 modes 35.6 0.0 35.9 0.0 

Modal-

analysis 

7 modes 35.6 0.0 35.9 0.0 

1) Also corresponds to the modal-analysis with one mode 

 

Table 5.7. Relative error in maximum midpoint moment using modal-analysis with 

one, three, five and seven modes for LC1 and LC3, regarding 5 % 

damping. 

Type of 

analysis 

Numer of modes LC1 LC3 

Mmax [kNm] ξ [%] Mmax [kNm] ξ [%] 

Modal- 

analysis 

Max moment 

(25 modes) 

82.2 - 83.7 - 

SDOF-

analysis 

1 mode 
1)

 70.8 -13.9 71.0 -15.2 

Modal-

analysis 

3 modes 82.8 0.6 85.6 2.3 

Modal-

analysis 

5 modes 82.2 0.0 83.5 -0.2 

Modal-

analysis 

7 modes 82.2 0.0 83.7 0.0 

1) Also corresponds to the modal-analysis with one mode 
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The most important fact to point out in these analyses is that the SDOF-analysis, when 

neglecting the damping, is a good approximation for the modal analysis with 25 

modes when the damping is over five percent, especially when looking at the 

midpoint moment. An example is calculated for load case 1: 

%9.6100
2.82

2.825.76





 

(5.6)  

This means that one can obtain quite accurate results when designing if neglecting the 

damping, even though the result is somewhat on the unsafe side. However, since a 

reinforced concrete beam will yield is seven percent not crucial for the structure. The 

structure is able to redistribute the tension due to the yielding. In Appendix I other 

beams have been calculated, as a comparison. 

The reader is reminded that this comparison between undamped SDOF and the 

damped FE-analysis is regarding five percent damping. It should be pointed out that if 

a prestressed concrete beam is considered the damping may very well be lower than 

that. According to Table 5.3 is the damping ratio for prestressed concrete between two 

and three percent. 

 

5.3 The transformation factor for damping 

Usually when analysing and designing with regard to explosions the damping is 

neglected and there is no need to have a damping transformation factor. However, 

when performing a more detailed analysis, the transformation factor could have a 

significant impact on the result. In Section 2.4.2 it was mentioned that the 

transformation factor for damping reasonably could be the same as the transformation 

factor for the stiffness and force. A way to analyse what the transformation factor 

could be is to use mode superposition with only one mode and compare this with the 

SDOF-model for a high damping value. This is done for all four load cases with a 

damping of 20 percent and is here shown for load case 0 and load case 3 in 

Figure 5.23. It can be seen that the convergence between the FE-analysis and the 

SDOF-analysis is good with a transformation factor κcF = 0.8, which in Figure 5.23 is 

labelled as SDOF 0.8. When going from a less impulsive load to a more impulsive 

one the curves are somewhat drawn to the left. 
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     (a)

 

     (b) 

Figure 5.23. Difference between midpoint displacements over time for FE-analysis 

and SDOF-analysis with damping factor 0.8 and 1.0 for beam 1 in (a) 

LC0 and (b) LC3. 

It is hereby indicated that κcF is not 1.0, but for this case closer to 0.8. The number 0.8 

is not proven to be the exact number but it gives a very good approximation. In order 

to investigate whether this result is just a coincidence for this beam or not, the same 

analysis has been made for other cross-sections. Instead of varying the geometry of 

the cross-sections, only the density ρ and Young’s modulus for concrete Ec is changed 

in purpose of keeping the modelling simple. In Figure 5.24 the analysis is made for 

load case 0 and load case 3 for beam 2 with properties seen in Table 5.8. The beam 

from Chapter 3, which has been analysed throughout this Master thesis, is hereby 

referred to as beam 1.  
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Same as for beam 1 it can be seen that when κcF is set to 0.8 instead of 1.0 a much 

better convergence is achieved between the SDOF- and the FE-analysis. For detailed 

info of all five beams and all four load cases the reader is referred to Appendix H. 

There, it can be seen that if κcF is set to 0.8 the agreement is good for all the beams 

and all load cases. 

The factor 0.8 is not the exact value for κcF but merely a very good approximation. 

The exact value will not be further investigated in this Master thesis but it could be of 

interest in future studies. 

 

Table 5.8. Properties of beams 1 to 5. 

Properties Ec [GPa] ρ [kg/m³] 

Beam 1 33 2400 

Beam 2 40 3000 

Beam 3 20 2000 

Beam 4 33 4800 

Beam 5 66 2400 
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     (a)

 

     (b) 

Figure 5.24. Difference between midpoint displacements over time for FE-analysis 

and SDOF-analysis with damping factor 0.8 and 1.0 for beam 2 in (a) 

LC0 and (b) LC3. 
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5.4 Discussion 

It was seen in Chapter 4 that the demand for the use of several modes to accurately 

capture the moment of the beam is higher than the demand if the displacement is 

calculated. In Chapter 5 it was made clear that this is the case. A simply supported 

beam subjected to a uniformly distributed load will oscillate mainly with its first mode 

shape and one can accurately capture the displacements by using the SDOF-model. It 

was shown that the actual deflection shape only significantly differed from the 

assumed deflection shape within the first few ms, which is before the maximum 

values have been reached so it is not of any importance. The moment, however, is 

more visibly influenced by more modes than the displacement and is therefore more 

difficult to describe with the SDOF-model. The relative errors were also shown to be 

quite large. For less intense loads, it is not required to use as many modes as for a 

highly intense load where it was shown that at least five modes should be regarded if 

the size of the error should not be bigger than for the error for the displacement using 

the SDOF-model. If one is interested in showing the moments with good accuracy and 

with a simpler approximation than doing a FE-analysis, one should create an MDOF-

model using at least three modes. 

Because the beam has a height, it takes time for the wave to propagate through the 

cross-section which means that there will be an actual delay to the maximum 

moments. With the height known, and the information speed calculated, it is possible 

to calculate the time, t1, it takes for the wave to propagate through the beam’s cross 

section, i.e. two times the height. If a moment peak in time is so narrow that time t1 

exactly fits between the boundaries of the moment peak, the values above (or below if 

the moment is negative) this position can be disregarded, so the tip of the peak is cut 

off. The moment peak in time then only becomes as narrow as the time it takes for the 

information to travel two heights of the beam. This method could possibly bring down 

the maximum values from the analysis without damping, but probably not by much. 

When the damping is applied to the system, the peaks become wider and less 

prominent so the decrease in moment becomes negligible. 

When modelling with damping, the SDOF-analysis generally correlates better to the 

FE-analysis. In order to be able to be on the safe side for the moment when 

calculating with the equivalent static load, it was shown that the structure should have 

a damping of at least 10 percent. This is a very high damping, and in reality it is more 

likely that a reinforced concrete beam has a damping factor of about five percent. 

Since the SDOF-analysis give lower maximum moments than the FE-analysis, it can 

be beneficial to use the maximum moment from the undamped SDOF-analysis as the 

maximum moment for the actual damped case, as these numbers are closer. Notice 

that there is still a significant difference in the results, which are on the unsafe side, so 

an up-scaling factor should be used. 

Designing with regard to damping is more advanced and takes more time than when it 

is neglected, both mathematically and analytically, as the damping factor first needs to 

be determined before any calculations can be made, and if a too high damping value is 

chosen the results will no longer be on the safe side. However, if the right damping 

factor is found, the results will be closer to reality and it can be important to be able to 

get these more accurate results in analyses where it is difficult to motivate that the 

capacity of an existing structure is sufficient. 

It was successfully shown that when the transformation factor for the damping for the 

simply supported beam subjected to a uniformly distributed load was set to κcF = 0.8 
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instead of the assumed value of 1.0, a much better convergence was seen between the 

SDOF- and the modal-analysis using one mode. The damping is a way to describe the 

energy loss in the system due to heat development, which depends on the velocity and 

therefore the damping effect should differ for different load cases. In the undamped 

case the maximum moments are larger for load case 3 than for load case 1, but when 

damping is applied they are about the same. Hence, this means that the damping effect 

is higher for a more impulsive load. 

Today, the damping factor is not calculated from material properties; it is 

experimentally determined. It is therefore believed that there is no reason for trying to 

derive the exact solution for the transformation factor for the damping until there are 

methods of determining the damping factor analytically. However, it is possible to 

table values for the transformation factors for different type of loads and boundary 

conditions. These can be achieved by iterating the SDOF-analysis with different 

values and comparing to the FE-analysis, both with high damping, until a 

convergence is met. 

 

  



Denna sida skall vara tom!
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6 Curtailment 

Curtailment, or shortening of reinforcement, is used to decrease the expenses when 

designing a structure, both for walls and beams. In defence shelters and military 

structures that are explicitly designed to withstand the load from an explosion, 

however, curtailment is never used. Hence, analyses with curtailment are not so 

common when analysing structures with regard to explosions. However, since this 

Master thesis focuses on civil structures where curtailment is more common, a further 

detailed analysis is made. 

When designing with regard to a static moment it is easy to predict the moment 

distribution and determine the reinforcement accordingly. In that way less 

reinforcement is used and money can be saved. However, when looking at the 

moment distribution when a structure is impulse loaded the moment has been shown 

not to be similar to the static moment for the first few ms. The moment will be larger 

closer to the supports than in the middle of the beam. Due to this it is interesting to 

analyse how a beam with curtailment reacts when loaded with an impulse. Will the 

beam get large plastic deformations or is the moment capacity exceeded only for a 

short period of time so that no real harm is done? 

As an example, a curtailment analysis of the beam from Chapter 3 is made. By 

looking at the moment distribution from the equivalent static load, seen in Figure 6.1, 

two different cases of curtailment are chosen and analysed. It is important to mention 

that a simplification is made. Usually when designing with curtailment the designing 

moment is offseted in accordance with the tensile force contribution due to inclined 

shear cracks. However, when analysing the subjected beam due to curtailment this 

contribution is disregarded since this effect is not captured in a FE-analysis using 

beam elements. 

 

 

Figure 6.1. Moment distribution for plastic material response from equivalent static 

load, and moment capacity for curtailment at (a) L/6; (b) L/4 from the 

beam ends. 
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The two cases analysed are shown in Figure 6.2. The first case is a curtailment of the 

bottom reinforcement at L/6 from the ends of the beam. Here, the reinforcement 

spacing is increased from 150 to 300 mm, decreasing the capacity in this region to 

29.6 kNm. In this point the beam is affected by a moment from the equivalent static 

load of 26.2 kNm. The second case is a curtailment of the bottom reinforcement at L/4 

from the ends of the beam. The amount of bottom reinforcement is reduced as the 

distance between the bars is increased from 150 to 200 mm, decreasing the capacity in 

this region to 38.3 kNm. In this point the beam is affected by a moment from the 

equivalent static load of 35.2 kNm.  

   

Φ10 s150 

(a) 

Φ10 s300 L/6 L/6 2L/3 

L/4 L/2 L/4 

(b) 

Φ10 s150 

Φ10 s200 

 

Figure 6.2. Simply supported beam with curtailment of (a) L/6; (b) L/4 from the 

ends. 

When analysing the curtailment it is of interest to see how the moment envelope is 

changed in comparison to the moment capacity. If the moment capacity is not reached 

then there will be no problem with curtailment. However, if the capacity indeed is 

reached the beam will start to yield. It is then interesting to see if the capacity is 

reached for a long or short period of time. If the capacity is reached only for a short 

period of time the plastic strain will be small and the beam will have no problem to 

withstand the load, but if it is reached for a longer period of time then large plastic 

strains can develop and problems may arise. Due to this it is, besides the moment 

envelope, also interesting to study the development of plastic strain for the beam. 

 

6.1 Curtailment analysis 

The moment distribution for the two beams has been studied and the progression of 

the moment envelope is shown in Figure 6.3 for the beam with curtailment at L/6 

from the ends. As a comparison, the progression of the moment envelope for the beam 

without curtailment is shown in Figure 6.4. 
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Figure 6.3. Moment envelope for beam 1 with curtailment of L/6 from the ends at 

different times. 

 

 

Figure 6.4. Moment envelope for beam 1 without curtailment at different times. 

The two moment envelope progressions are very similar for the case with and without 

curtailment. It can be seen that the moment has progressed further for every time for 

the case without curtailment, but the most important difference is seen at the final 

envelope after 30 ms where the moments differ by up to as much as 20 percent in the 

region within a distance of L/6 from the beam ends. This is not unexpected, though, as 

the moment capacity differs in these points, and it is possible that the capacity is 

reached for both cases. 

To better show where the moment capacity is reached, for how long and how it differs 

with different load cases another figure is presented. The final moment envelope is 

shown in Figure 6.5 for all load cases, together with the moment capacity for the 

curtailed beam and the moment from the equivalent static load. It can be seen that the 
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moment capacity is reached at the curtailment where the moment from the equivalent 

static load would not. As expected, the reduced moment capacity is reached closer to 

the supports for more impulsive loads, but will this cause the failure of the beam?  

 

 

Figure 6.5. Moment envelope for all load cases and reduced moment capacity due 

to curtailment at L/6 from edge 

Showing the moment distribution for a beam with ability to deform is not sufficient to 

determine whether there will be failure or not, and therefore the plastic strains are 

studied. Because of this, a schematic figure of the moment envelope is shown for one 

case only, but the strains are studied more thoroughly for both cases presented in 

Figure 6.2. The beam will be subjected to plastic strain wherever the moment capacity 

is reached, and the magnitude of the strain is based on how long the moment remains 

at the limit. It is difficult to determine a certain limit for the strain with regard to 

failure. However, when the strain in the beam with curtailment at L/6 from the edges 

exceeds the limit of three to five percent, the probability of failure will be imminent, 

according to Appendix J. In order to determine where the failure will occur, the 

plastic strain distributions in the two cases are studied for the different load cases, see 

Figure 6.6 and Figure 6.7. 
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Figure 6.6. Plastic strain for the beam with curtailment of L/6 from the ends. 

 

 

Figure 6.7. Plastic strain for the beam with curtailment of L/4 from the ends. 

As seen from Figure 6.6 and Figure 6.7, one major plastic zone forms in the middle 

and two minor plastic zones at L/6 and L/4 from the ends for each beam respectively. 

The reason why the major strain peak in the middle is larger than at the curtailment is 

because the moment capacity is reached here for a longer duration. It can also be seen 

that the magnitude of plastic strain differs for the different load cases, but the 

difference is not consistent with the location in the beam or between the two cases. 

For instance, for the beam with curtailment at L/6 from the ends, the largest strains at 

the curtailment will occur for load case 3, but for the beam with curtailment at L/4 

from the ends the largest strains at the curtailment will be achieved for load case 0. 

When looking at the strains in midpoint, the largest plastic strain is achieved for load 

case 0 for the beam with curtailment at L/6, while the largest plastic strains for the 

beam with curtailment at L/4 is achieved for load case 1. This means that the 
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magnitude of developed plastic strain is not solely governed by either maximum 

pressure or load time. This can be shown by looking at the moment over time for the 

nodes where the strains occur. 

The moment over time at the node where the right hand side curtailment starts is 

shown in Figure 6.8 for the case of curtailment at L/6 from the ends. Even though the 

moment cannot exceed the yield limit, and is only a product of calculation errors in 

ADINA, it is shown to easier see how the plastic strains will vary for different load 

cases. While load case 3 is the most intense of the four load cases and therefore causes 

the moment capacity to be reached early, the worst case will occur for load case 0 as 

the capacity is reached for a longer time. 

 

 

Figure 6.8. Moment over time at coordinate x = 5L/6. 

 

6.2 Discussion 

It has been shown that for this beam, curtailment will not be a threat of the capacity of 

the beam, even though the moment envelope seemed dangerous before the curtailment 

analysis was performed. It is however very clear that the beam will develop plastic 

hinges at the curtailment points. This will lead to a larger total plastic strain of the 

beam since it is also indicated that the plastic strain in the middle will be unchanged 

from the case without curtailment. Hence, the total deformation in the midpoint will 

increase if the beam is designed with curtailment.  

A conclusion is also drawn that it is not possible to say whether the plastic strains will 

be smaller or larger for more intense loads, which was first assumed. This was 

actually a surprisingly find. It seems that it is not possible to generally determine 

which load case is the most dangerous because of the fact that the strain both takes the 

magnitude of the force and the duration the yield moment is reached into account. It 

would be interesting to see more studies on this to be sure of the findings. 
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7 Final remarks 

7.1 Conclusions 

It is possible to accurately simplify the displacements of a simply supported beam for 

different material behaviours with an SDOF-model by using certain transformation 

factors. Because the beam’s initial deflection for a highly impulsive load differs a lot 

from static deflection shape the simplification is initially poor, but by the time the 

deflection reaches its maximum value the deflection shapes are very similar and the 

results converge well. 

The modelling of the moments is more complex and requires a multi degree of 

freedom-model with more modes to get accurate results. It is also possible to describe 

the maximum moment distribution by using an equivalent static load, but it was 

shown to underestimate the moment in every node unless a damping of at least 10 

percent is used for the FE-analysis. For reinforced concrete beams a reasonable 

damping would be around five percent. 

For design purpose it is of interest to compare the undamped SDOF-model with the 

FE-analysis using damping. When the moment from the SDOF-model was compared 

to the FE-analysis using damping, the results were better than for the FE-analysis 

without damping, but the moment was still underestimated by 6-9 percent in the 

SDOF-model. 

When comparing the displacements from the SDOF-model to the modal-analysis 

using only one mode, both with high damping, it was seen that a better convergence 

was obtained when the transformation factor κcF was set to 0.8 instead of the 

previously assumed value of 1.0. 

The analysis of the curtailed beams did not reveal any special problems. Significant 

plastic strains were noticed at the curtailed area, but the plastic strains in midpoint 

were at least five times larger for all studied cases. Furthermore, it was not possible to 

determine a correlation between the intensity of the load and the plastic strain for the 

beam, as the yielding is a function of both moment and time. These results indicate 

that the negative effect due to curtailment may be possible to adequately deal with in a 

reinforced concrete structure; i.e. the possible negative effect due to curtailment is 

believed to be small. 

 

7.2 Further studies 

There seems to be a connection between the wave propagation and the moment 

progression in the beam, and it would be interesting to know more about this. When 

the beam is modelled in the FE-model for plastic material behaviour a very high 

initial Young’s modulus is used, and it will increase the information speed in the 

concrete. It is interesting to study this further in order to tell if this modelling method 

will affect the results significantly. 

It is interesting to further study the dynamic response of a structural member with 

different properties depending on the direction of deflection. If a beam with 

symmetrical cross-section can withstand the first and largest deflection, there will be 

no problems with the other deflections. However, if the beam is weaker in the 

opposite direction a failure might occur because of the recoil. This could be a risk in 
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for example unsymmetrical reinforced concrete beams or T-cross-sections, and a way 

of modelling this should be developed. 

Both the moment from the SDOF and from the equivalent static load, for the elastic 

response, will underestimate the maximum moments for an impulsive load, but since 

they are quick and easy to calculate it is of interest to make them accurately describe 

the moment on the safe side, and therefore it is of interest to find up-scaling factors 

for the moment that sufficiently works. 

Since the transformation factor for the damping κcF was only handled briefly in this 

Master thesis there is a need for verifying the accurate value and also list the values 

for different types of loads and boundary conditions. It should also be investigated 

whether the transformation factor is dependent of the damping or not. It is of special 

interest to derive the transformation factor in the future. This might be done with 

regard to velocity, i.e. the derivative of the displacement. 

It is not clear if a beam will obtain more maximum plastic strain when subjected to a 

highly impulsive load than when subjected to a less impulsive load and this could be 

of interest to study further in the future. 

Also, the analyses made in this Master thesis could be verified by more accurate non-

linear FE-models, using solid elements to explicitly model concrete cracking and 

reinforcement yielding. The modelling should also be extended to cover other 

materials such as timber and steel. 
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Appendix A Beam theory 

In structural analysis and design it is important to understand the calculations of the 

deflection. Large deflections, high tensions and unwanted cracks are all connected, 

hence, the deflection is a good way to verify the resistance of a beam. 

In order to fully comprehend the deflection it is important to understand the symbols 

for displacement. Displacement in the x, y and z directions are connected with the 

letters u, v and w respectively. A vertically loaded (y direction) horizontal beam (x 

direction) will be deformed into a curve, see Figure A.1. Thus will the deflection v be 

the displacement in the y direction.  

 

v 
z,w 

y,v 

x,u 

 

Figure A.1. Coordinate system and deflection for vertically loaded beam. 

In order to derive the deflection curve the reader is referred to Figure A.2.  

 

dx 

O´ 

dθ 

m2 m1 

ρ 

dθ 

ds 

 

Figure A.2. Curvature of a deflected beam. 

With the radius of curvature ρ and the angle between the normal’s for m1 and m2 it is 

possible to derive the curvature:  

dsd    (A.1)  

The curvature can be expressed as the angular change over the curved length. 






1


ds

d
 (A.2)  

According to Figure A.3 the slope of the deflected beam can be expressed as: 

dx

dv
tan  (A.3)  

which is the first derivative of the deflection v. An expression for cos θ can be found: 
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ds

dx
cos  (A.4)  

 

y 

dv 

ρ-y 

dx dθ 

m2 

m1 
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ds 
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ds' 

 

Figure A.3. Deformations of a beam in pure bending. 

Assuming small angles and rotations, the following simplifications can be made: 

 tan  (A.5)  

and 

1cos   (A.6)  

which leads to 

dx

dv
  (A.7)  

and 

dxds   (A.8)  

By inserting Equation (A.7) in Equation (A.2) the following differential equation for 

the curvature with regard to the deflection v is formed: 

2

2

dx

vd

dx

dv

ds

d









  (A.9)  

From Figure A.3 an expression for the horizontal strain, εx, at the distance y from the 

neutral axis can be derived as  






y

d

ddy

ds

dsds
x 







('
 (A.10)  

It is known from Hooke’s law that 
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Exx    (A.11)  

which by insertion of Equation (A.10) can be written as 

E
y

x


   (A.12)  

The connection between the curvature and the moment, M, can be derived with help 

of Figure A.4, which shows the linear stress distribution and moment over the cross-

section for an arbitrary beam subjected to pure bending. When the moment and 

curvature are positive the area above the neutral axis is in compression and the 

stresses σx are negative; the area below the neutral axis is in tension and the stresses 

are positive.  

y 

dA 

M 

σx 

(a) (b)  

Figure A.4. (a) Side view of normal stress distribution in an arbitrary beam of linear 

elastic material, and (b) cross section of the same beam. 

For an infinitesimal area dA which is subjected to negative stress σx with the lever y 

from neutral axis, the positive partial moment is written as 

dAydM x  (A.13)  

By integrating the stresses over the area the moment is given by 

 
AAA

x dAy
E

dA
Ey

dAyM 2
2


  (A.14)  

Since the moment of inertia of the cross-sectional area can be written as 


A

z dAyI 2  (A.15)  

Equation (A.14) can be written as 



zEI
M   (A.16)  

which can be rewritten as 



1


zEI

M
 (A.17)  
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Finally, insertion of Equation (A.17) in (A.2) gives 

zEI

M
  (A.18)  

or 

2

2

dx

vd

EI

M

z

  (A.19)  

which is also called the basic differential equation of the deflection curve of a beam. 

Hence, the moment is proportional to the curvature. 
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Appendix B Central Difference Method 

B.1 Numerical solution 

The central difference method is an explicit method for solving the equation of 

motion: 

)(tFkuucum  
 

(B.1) 

where m is the mass, c is the damping, k is the stiffness, ü is the acceleration,    is the 

velocity, u is the displacement and F(t) is the driving force. 

By solving an equation explicitly means that in order to calculate ui+1 the method uses 

ui and ui-1. The method also uses a constant time step, Δt. The index i is stated by the 

observed time. 

By referring to Figure B.1 the velocity and acceleration at time i can be expressed as 
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(B.3) 

respectively in the central difference method. The acceleration in Equation (B.3) is 

derived as the difference of mid interval velocities (the circles in Figure B.1). 
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t 

u 
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Figure B.1. The central difference scheme. The method uses ui- and ui in order to 

solve ui+1. 

By inserting Equations (B.2) and (B.3) in (B.1), an approximation of the equation of 

motion is given as 
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(B.4) 

where ui and ui-1 are assumed to be known. Rearranging Equation (B.4), by moving 

the known displacements ui and ui-1 to the right side, gives 
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(B.8) 

It is now possible to derive the expression for the sought displacement, ui+1 as 
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F
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ˆ
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(B.9) 

From Equation (B.8) it is seen that ui and ui-1 are used to solve ui+1, i.e. in order to 

determine u1 the displacements u0 and u-1 must be known. The initial displacement u0 

is assumed to be known, it is zero in this Master thesis. The displacement u-1 can be 

determined by setting i=0 in Equation (B.2) and (B.3), then solving for u1 in Equation 

(B.2) and substituting in (B.3). 

The starting step of solving the central difference method is then given as 
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(B.10) 

 

B.2 Stability 

A solution is said to be stabile if errors in the initial conditions do not grow during the 

iterations, which can easily happen if the chosen time step is not short enough. 

According to Chopra, (2011), the requirement of stability for the central difference 

method is specified as 
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t

 
(B.11) 

If this requirement is not met, the central difference method will “blow up” and 

quickly become useless. For explosions this is seldom a problem since much smaller 

time steps usually are used anyway to obtain accurate enough results. 
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B.3 Non-linear material response 

The central difference method is also an excellent method when dealing with a non-

linear material response. The method derived in Appendix B.1 is for a linear stiffness 

but can easily be altered to be able to calculate the displacement for a structure with a 

non-linear material response. Similar to the displacement, the stiffness k can be 

calculated at different times as a response of the displacement: 

)( iii ukk 
 

(B.12) 

In a system with a non-linear material response the stiffness will change with time 

21   iii kkk
 

(B.13) 

while it for a linear material response will stay the same: 

kkk ii  1

 
(B.14) 

When analysing the structural response it is however more of interest to derive the 

inner resistance for a certain time than focusing on the stiffness, thus, the stiffness ki 

will be inserted in the equation for the inner resistance as follows: 

iii ukR 
 

(B.15) 

In Figure B.2 it is shown how the response changes for different displacements.  

 

 

u 
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u(ti+2) 

R(ti) 

k(u(ti)) 
k(u(ti+1)) 

u(ti) u(ti+1) 

k(u(ti+2)) 

R(ti+1) 

 

Figure B.2. The stiffness at time ti for a non-linear material response. 
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Appendix C Deformation shape and moment over 

time 

In order to help the reader the deformation shape and the moment distribution have 

been plotted over time. Then one can see how the beam will deflect when subjected to 

an explosion. It is also very interesting to see how the moment develops over time. 

The figures are showing an elastic stadium II, plastic and elasto-plastic material 

response for the beam described in Chapter 3, beam 1. 

C.1 Linear elastic 
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t = 0.4 ms 

 

t = 0.5 ms 
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t = 0.7 ms 
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t = 0.8 ms 
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t = 2.0 ms 
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t = 4.0 ms 

 

t = 4.5 ms 

 

t = 5.0 ms 

 

t = 6.0 ms 
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t = 7.0 ms 

 

t = 8.0 ms 

 

t = 9.0 ms 

 

t = 10.0 ms 
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t = 11.0 ms 

 

t = 12.0 ms 

 

t = 13.0 ms 

 

t = 14.0 ms 
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t = 15.0 ms 

 

t = 20.0 ms 

 

t = 25.0 ms 

 

t = 30.0 ms 
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C.2 Ideal plastic 

 

t = 0.1 ms 
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t = 0.4 ms 

 

t = 0.5 ms 

 

t = 0.6 ms 

 

t = 0.7 ms 

 

t = 0.8 ms 
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t = 0.9 ms 

 

t = 1.0 ms 

 

t = 1.5 ms 

 

t = 2.0 ms 
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t = 2.5 ms 

 

t = 3.0 ms 

 

t = 3.5 ms 

 

t = 4.0 ms 
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t = 4.5 ms 

 

t = 5.0 ms 

 

t = 6.0 ms 

 

t = 7.0 ms 
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t = 8.0 ms 

 

t = 9.0 ms 

 

t = 10.0 ms 

 

t = 11.0 ms 
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t = 12.0 ms 

 

t = 13.0 ms 

 

t = 14.0 ms 

 

t = 15.0 ms 
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t = 20.0 ms 

 

t = 25.0 ms 

 

t = 30.0 ms 
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C.3 Elasto-plastic 

 

t = 0.1 ms 
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t = 0.3 ms 
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t = 0.4 ms 

 

t = 0.5 ms 

 

t = 0.6 ms 

 

t = 0.7 ms 

 

t = 0.8 ms 
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t = 0.9 ms 

 

t = 1.0 ms 

 

t = 1.5 ms 

 

t = 2.0 ms 
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t = 2.5 ms 

 

t = 3.0 ms 

 

t = 3.5 ms 

 

t = 4.0 ms 
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t = 4.5 ms 

 

t = 5.0 ms 

 

t = 6.0 ms 

 

t = 7.0 ms 
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t = 8.0 ms 

 

t = 9.0 ms 

 

t = 10.0 ms 

 

t = 11.0 ms 
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t = 12.0 ms 

 

t = 13.0 ms 

 

t = 14.0 ms 

 

t = 15.0 ms 
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t = 20.0 ms 

 

t = 25.0 ms 

 

t = 30.0 ms 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

D
ef

o
rm

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-10

0

10

20

30

40

50

0 1 2 3

M
o

m
en

t,
 M

 [
k

N
m

]

Coordinate, x [m]

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

D
ef

o
rm

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-10

0

10

20

30

40

50

0 1 2 3

M
o

m
en

t,
 M

 [
k

N
m

]

Coordinate, x [m]

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

D
ef

o
rm

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-10

0

10

20

30

40

50

0 1 2 3

M
o

m
en

t,
 M

 [
k

N
m

]

Coordinate, x [m]

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

D
ef

o
rm

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-10

0

10

20

30

40

50

0 1 2 3

M
o

m
en

t,
 M

 [
k

N
m

]

Coordinate, x [m]



Denna sida skall vara tom!



 
155 

Appendix D Mode superposition 

To solve the equation of motion for an MDOF-system, for an elastic response, matrix 

calculations are used. These calculations often become heavy and cumbersome for 

complex systems. If the damping is neglected it is possible, by using the free vibration 

mode shapes, to uncouple the equations and solve them separately. This is done by 

insertion of so called modal coordinates. The exact solution to the original equation is 

given when all equations are added together, but if a faster solution is wanted it is 

possible to create an approximation of the solution by only using some modes. For 

many systems it is often sufficient to include only the first few modes, and still attain 

a good approximation. Each equation can be solved as an SDOF-system of its own 

and thereby an n-DOF-system will have n natural frequencies and n corresponding 

mode shapes. 

The undamped free vibration of motion is written as 

)()()( ttt pkuum 

 

(D.1) 

To solve this equation we insert modal coordinates, q, such as  

)(...)()()( 2211 tqtqtqtu nn 

 

(D.2) 

where ϕi are modal vectors describing the shape of mode i and Equation (D.2) is 

called a modal expansion of u. For all modes, the vector u can then be written as 

Φqu 

 

(D.3) 

where 

)  ...  ( n21 Φ

 

(D.4) 

) ...  ( 21 nqqqq  (D.5) 

Since ü is the second derivative of u, the vector ü can be written as 

)(...)()()( 2211 tqtqtqtu nn
  

 

(D.6) 

or in matrix form 

qΦu  
 

(D.7) 

Insertion of Equation (D.3) and Equation (D.7) in (D.1) gives 

)()()( ttqt pkΦqmΦ 

 

(D.8) 

Premultiply with the mode shapes ΦT
 gives 

)()()( ttqt TTT pΦkΦΦqmΦΦ 

 

(D.9) 
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Using orthogonality: 

ii

T

i Mm 

 

(D.10) 

ii

T

i Kk 

 

(D.11) 

)()( tPtp ii

T

i 

 

(D.12) 























n

T

n

T

n

T

n

n

TTT

n

TTT

T

mmm

mmm

mmm















21

22212

12111

mΦΦ

 
(D.13) 
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which leads to 
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and so 
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The equation of motion is now uncoupled and known as the modal equations 
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or 
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With the natural frequency ωi for mode i is defined as 
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the uncoupled Equations (D.19) can be written as 
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where each equation is an SDOF-system of its own, and the exact solution is given 

from 
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where the coefficients A and B are determined from the initial conditions: 
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Generally, when damping is included in the equation of motion, it can no longer be 

uncoupled and instead the damping matrix can be described as a linear combination of 

mass and stiffness. This is called Rayleigh damping. 
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Appendix E Rayleigh damping 

When designing structures for impulse loads one does not need to regard the damping, 

since the worst case will always be when there is no damping, but for analysis it is 

important to regard it in order to obtain an accurate representation of the response. 

According to Chopra (2011), if the structure is assumed to consist of similar parts 

with similar damping properties, a so called classical damping can be adapted. 

Classical damping is a special case of viscous damping where a proportional damping 

is assumed for the system, and it is possible to apply this on the uncoupled equations 

of motion that allow MDOF systems to be treated as a collection of SDOF oscillators, 

Adhikari (2000). 

If the structure is either non-linear or has non-classical damping, a damping matrix is 

needed. In this Master thesis, however, the damping has been regarded as classical 

damping, and Rayleigh and modal damping is used. 

Rayleigh damping consists of both mass-proportional damping and stiffness-

proportional damping and the relationship is written as 

KMC  

 

(E.1) 

where C is the diagonal damping matrix, M is the mass matrix, K is the stiffness 

matrix and α and β are coefficients to the mass- and stiffness term, respectively. The 

coefficients are obtained by choosing a specific mode frequency, ω, and its damping 

ratio, ζ, which for mode n is written as 
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Since Equation (E.2) has two unknowns it can only be uniquely solved by using the 

two damping ratios ζi and ζj for the ith and jth mode, respectively. In matrix form this 

is expressed as 
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which, if the damping ratios are assumed to be the same, leads to the two algebraic 

equations for solving α and β: 
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As can be seen from the typical Rayleigh damping curve shown in Figure E.1, the 

mass term affects the damping more for lower frequencies while the stiffness term 

dominates the damping for higher frequencies. This results in the damping being 
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lower in the interval between the two chosen frequencies, and higher outside the 

aforementioned interval. 

 

Figure E.1. Rayleigh damping and its contribution from mass- and stiffness-

proportional damping. 

To attain the frequencies, f, in hertz, the angular velocity is divided by 2π, as seen in 

Equation (E.1).  
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Appendix F Mode shapes and eigenfrequencies, 

Beam 1 

In ADINA the mode shapes seen in Figure F.1 represent the first 10 mode shapes for 

the simply supported beam 1 as three other modes are seen on third, seventh and ninth 

place. These three modes are longitudinal stretching modes that appear because one of 

the supports does not have a restriction in the x-direction, and they have been 

disregarded in this Master thesis. 

 

 

1st mode 

2nd mode 

3rd mode 

4th mode 

5th mode 

6th mode 

7th mode 

Longitudinal stretching mode 

(in ADINA) 

Eigenfrequencies 

10.84 Hz 

43.11 Hz 

96.14 Hz 

168.8 Hz 

259.8 Hz 

367.4 Hz 

490.0 Hz 

89.79 Hz, 269.6, Hz, 450.2 Hz 

Bending modes 

 

Figure F.1. First seven mode shapes and a longitudinal stretching mode and their 

eigenfrequencies for the simply supported beam, Beam 1, from 

Chapter 3.  
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Appendix G Verification of different analyses 

G.1 SDOF-analysis versus modal-analysis with one mode 

An analysis is made in order to study the similarity of the SDOF-analysis and the 

modal-analysis when only including one mode. This analysis has already been made 

for the displacement in Section 5.1 and here it is made for the moment. In theory these 

two analyses should give the same result. In Figure G.1 it is shown that they are very 

similar and they are assumed to give the same result. Because of this, where modal-

analysis with one mode is shown, the same applies to the SDOF-analysis and vice 

versa. 

 

     (a) 

 

     (b) 

Figure G.1. (a) The similarity of the SDOF-analysis and the modal-analysis with one 

mode, when subjected to LC1, (b) zoomed in. 
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G.2 Modal-analysis with 25 modes versus FE-analysis (direct 

integration) 

To be able to compare the number of modes required when analysing with regard to 

5% modal damping a modal-analysis with 25 modes is made. This is because when 

analysing with modal damping the ordinary FE-analysis (direct integration) can not be 

used. The difference between the modal-analysis consisting of 25 modes and the FE-

analysis is shown in Figure G.2, with comparison with the seven-mode-difference. 

When including 25 modes the results are almost identical to the FE-analysis. Hence, 

in this case when regarding modal damping the number of modes required is 

compared to a modal-analysis using 25 modes. 

 

Figure G.2. Difference between midpoint moments for modal-analysis with 7 and 25 

modes and the FE-analysis when subjected to LC3. 
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Appendix H Verification of the transformation 

factor for damping, κc  

In this appendix the figures are showing the response of the five different beams, 

simply supported, when struck by the four different load cases, uniformly distributed, 

in an elastic material response, hence elastic transformation factors. The damping 

ratio is set to 20 percent in order to make it easier to capture the damping effect. Since 

the plastic response is badly described by the SDOF without damping it is difficult to 

determine the plastic transformation factor and is not analysed. However, the elastic 

material response includes the FE-analysis and the SDOF-analysis when the damping 

term is multiplied with κcF equals 1.0 and 0.8: 

)(tFkuucum cFmF     (H.1) 

where  

F

c
cF




   (H.2) 

When κcF equals 0.800 the transformation factor for the damping, κc, equals 0.512. As 

mentioned earlier, Section5.3, will the exact value for the transformation factor not be 

determined. Further studies on the subject can be done including different boundary 

conditions and the plastic material response. It is also necessary to do analyses with 

different damping values than the high damping of 20 percent used here. It will also 

be interesting to compare the moment when performing those analyses. 

 

Table H.1. Properties of beams 1 to 5. 

Properties First eigenfrequency 

[Hz] 

Ec [GPa] ρ [kg/m³] 

Beam 1 10.8 33 2400 

Beam 2 10.7 40 3000 

Beam 3 9.2 20 2000 

Beam 4 7.7 33 4800 

Beam 5 15.3 66 2400 
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H.1 Beam 1 

 

 

Figure H.1. Beam 1, LC0 

 

 

Figure H.2. Beam 1, LC1 
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Figure H.3. Beam 1, LC2 

 

 

Figure H.4. Beam 1, LC3 
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H.2 Beam 2 

 

 

Figure H.5. Beam 2, LC0 

 

 

Figure H.6. Beam 2, LC1 
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Figure H.7. Beam 2, LC2 

 

 

Figure H.8. Beam 2, LC3 
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H.3 Beam 3 

 

Figure H.9. Beam 3, LC0 

 

Figure H.10. Beam 3, LC1 
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Figure H.11. Beam 3, LC2 

 

Figure H.12. Beam 3, LC3 
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H.4 Beam 4 

 

Figure H.13. Beam 4, LC0 

 

Figure H.14. Beam 4, LC1 
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Figure H.15. Beam 4, LC2 

 

 

Figure H.16. Beam 4, LC3 
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H.5 Beam 5 

 

 

Figure H.17. Beam 5, LC0 

 

 

Figure H.18. Beam 5, LC1 
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Figure H.19. Beam 5, LC2 

 

 

Figure H.20. Beam 5, LC3 
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Appendix I Comparison between the SDOF-model 

without damping and the FE-model 

with damping 

For design purpose is it interesting to compare the SDOF-analysis without damping 

with the FE-analysis, which is the modal analysis with 25 included modes, with modal 

damping. Then one can see how accurate the results are from a simple approximation 

such as the SDOF-model. In Table I.1 the comparison have been made with regard to 

the displacement and in Table I.2 the comparison is made with regard to moment. The 

different beams used can be found in Appendix H. 

 

Table I.1. Comparison between the SDOF-analysis without damping and the FE-

analysis when regarding 5 % damping for all beams and for LC1 and 

LC3 for the displacement. 

  SDOF [mm] FE [mm] Difference [%] 

 

 

LC1 

Beam 1 38.8 35.6 9.1 

Beam 2 31.5 29.3 7.7 

Beam 3 54.6 50.8 7.6 

Beam 4 27.5 25.5 7.6 

Beam 5 27.4 25.4 7.9 

 

 

LC3 

Beam 1 38.9 35.9 8.4 

Beam 2 31.6 29.6 7.0 

Beam 3 54.8 51.2 7.0 

Beam 4 27.5 25.7 7.0 

Beam 5 27.5 25.7 7.0 
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Table I.2. Comparison between the SDOF-analysis without damping and the FE-

analysis when regarding 5 % damping for all beams and for LC1 and 

LC3 for the moment. 

  SDOF [kNm] FE [kNm] Difference [%] 

 

 

LC1 

Beam 1 76.5 82.2 -7.0 

Beam 2 75.3 80.0 -5.9 

Beam 3 65.2 69.4 -6.0 

Beam 4 54.1 57.6 -6.1 

Beam 5 107.9 113.8 -4.7 

 

 

LC3 

Beam 1 76.7 83.7 -8.3 

Beam 2 75.6 81.4 -7.2 

Beam 3 65.4 70.5 -7.2 

Beam 4 54.3 58.5 -7.2 

Beam 5 108.5 116.8 -7.1 

 

It is interesting to see that for the displacement is the SDOF-model giving values on 

the safe side, approximately from seven to nine percent, while for the moment the 

model is giving values on the unsafe side, approximately from six to eight percent 

lower. 
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Appendix J Evaluation of the capacity of beam 1 

J.1 Beam 1 without curtailment 

In order to evaluate the beam, the rotation capacity from Section 2.2.5 and Figure 2.15 

is used. If the rotation capacity for the beam is known, it can be converted to a 

maximum midpoint displacement. This is an easy and fast way to check the capacity 

of the beam. 

 

θ 
umax 

l 

 

Figure J.1. Maximum deformation 

The following calculations are made in ultimate limit state. The upper reinforcement 

is taken into account as in Section 3.2.2. A new distance d is used since the distance 

d’ is not taken into account in the equation. Since the upper reinforcement also is in 

tension the distance d will equal 100 mm: 

26010026 .// dx
 

(J.1) 

With this value the allowed plastic rotation can be determined when regarding the 

reinforcement, B500B which is Class B, and the concrete, C 30/37 is approximated to 

C 50/60. 

rad 10011 3 .pl
 

(J.2) 

Now the shear slenderness, λ, needs to be determined and if it has another value than 

3.0 the allowed plastic rotation will have to be multiplied with a factor. The shear 

slenderness is calculated as: 

15
100

15000 
d

l


 
(J.3) 

where l0 is the length between the point of zero moment and the plastic hinge, and d is 

the effective depth to the reinforcement. 

242
3

.


k
 

(J.4) 

rad 106.24100.1124.2 33   plrd k    (J.5) 

The maximum deformation can now easily be calculated: 
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3000106.24

2

3

max 






l

u
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 (J.6) 

So, the deformation capacity in the midpoint of the beam is calculated to be 37 mm. 

This will be compared to the displacement from the SDOF-analyses and the FE-
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analysis with the elasto-plastic material response. Three SDOF-analyses were made in 

Section 4.1: one with elastic-, one with plastic and one with both transformation 

factors. The results from these were approximately 45 mm, 49 mm and 41 mm, 

respectively, while the FE-analysis also showed a displacement of 49 mm for the 

midpoint. This means that the allowed plastic rotation is exceeded by all of the 

analyses. Hence, the beam would probably fail if loaded with load case 1. 

 

J.2 Beam 1 with curtailment at L/6 

When the beam is fully reinforced without curtailment the method for evaluating the 

capacity is pretty straight forward. However, when curtailment of the beam is a fact 

the method for evaluating the capacity is more difficult, and above all, uncertain. 

 

θ1 

l0,1 

θ2 plastic hinge 

l0,2 

 

Figure J.2. Deformation when plastic hinges have developed. 

One way of determining if the plastic strain in the curtailment point is of concern is to 

compare it with the strain in the midpoint with regard to the rotation capacity.  
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Figure J.3. Schematic figure of the plastic strains for half the beam. 

If the smaller plastic strain is of no concern the following statement should apply: 
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In order to determine this, the allowed plastic rotation capacity for θrd,1 needs to be 

calculated. First, the compression zone is calculated. This is done in line with Section 

3.2.2, but now only with the curtailment taken into account: 
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Now, the allowed plastic rotation can be determined with use of Figure 2.15. The 

distance d is set to 100 mm: 

1960100619 ././ dx
 

(J.9) 

which leads to: 

rad 10512 3

1

 .,pl
 

(J.10) 

Same as for the beam without curtailment, the shear slenderness λ, scaling factor kλ 

and ultimately the new allowed rotation capacity θrd,1 are calculated: 
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where l0,1 is the length between the point of zero moment and the plastic hinge. 
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The allowed plastic rotation for θrd,2 is already calculated for the beam without 

curtailment in Section J.1: 

rad 106.24 3

2,

rd  (J.14) 

The following step is to determine the areas of the plastic strains with regard to load 

case 1 from Figure J.4. 

 

Figure J.4. Plastic strain for the beam with curtailment of L/6 from the ends. 
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Now Equation (J.7) can be checked: 
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Consequently, it is approximately a factor 5 between, which indicates that the strain at 

the curtailment point is not critical. 

Another way to evaluate the capacity is to convert the allowed rotation capacity into 

an allowed plastic strain. This can be done when assuming different forms and 

distribution of the plastic strain. If one assumption is on the safe side and the other on 

the unsafe side, the allowed plastic strain can be narrowed down to an interval. With 

use of Figure J.5 and Equations (J.18) to (J.20) the interval is calculated. 
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Figure J.5. Schematic figure of the plastic strains for half the beam where (a) is the 

real strain, (b) strain limit for failure on the unsafe side and (c) strain 

limit for failure on the safe side. 
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where α is a factor depending on the form and distribution. 
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For the simple case of Figure J.5 (b) the α-factor is 0.5 and the equation for the limit 

of plastic strain before failure for a calculation on the unsafe side is: 
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For the case on the safe side the α-factor is more difficult to determine so the area is 

calculated with use of Figure J.5 (c): 
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With use of Equation (J.19) the limit of plastic strain before failure, for a calculation 

on the safe side, is determined: 
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The limit for plastic strain before failure has now been set to an interval between 

approximately 3 and 5 percent. This should be compared to Figure J.4 where the 

plastic strain is 2.4 percent, which indicates that the beam will not break due to load 

case 1. This result was not anticipated since the beam in Section J.1 without 

curtailment was subjected to the same load and did actually break. This indicates that 

the beam actually can increase its resistance if curtailment is used. This could be 

derived to the increased plastic zone which will help with regard to deformation. 

It is difficult to determine if this way to analyse the beam is satisfying. One must be 

very careful when drawing conclusions from this result since it is uncertain if it is in 

line with EC2. One should keep in mind that the model used in this analysis is based 

on a elasto-plastic model while the suggestions in EC2 are based on experimental tests 

on reinforced concrete beams. Hence, there may be some discrepancies in between 

them.  


