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Design with Regard to Blast- and Fragment Loading 
 
Master’s Thesis in the Master’s programme Structural Engineering and Building 

Performance Design  

KARL-JOHAN EK 

PÄR MATTSSON 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 

Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT 

When a bomb detonates a blast wave is created and the case of the bomb is 
fragmentized into many fragments, which are released with a very high initial 
velocity. The fragmental impact is commonly considered in a simplified way, but 
studies carried out shows that fragments, combined with the blast load, can seriously 
damage a reinforced concrete structure if the detonation takes place close to a 
building. Hence, focus in this project is to simulate the fragments and their effects in a 
more advanced way and investigate how these results differ from simplified analyses. 

A simply supported, reinforced concrete beam, with geometry and reinforcement 
configuration corresponding to a civil defence shelter wall, is to be analysed. The 
blast wave is consistently applied as an uniformly distributed load with a constant 
duration and amplitude. The fragmental impact on the other hand is analysed in 
various ways to see how the structural response in simplified analyses differ from 
more advanced ones. The fragmental impact and penetration into the concrete is also 
analysed, where the beam loses bearing capacity and mass. 

To be able to analyse such a complex problem, transient, finite element analyses have 
been performed in the general finite element programme ADINA. The results 
obtained in these analyses have been compared to results obtained by single degree of 
freedom analysis and simplified hand calculation in order to verify the FE-results. 

Concerning the impact of the fragmental loads appearance, it turned out that 
simplified and more advanced analyses, generates similar results. However, when the 
loss of stiffness and mass, due to fragmental penetration of the beam, are taken into 
account, this have significant influence on its dynamic behaviour. 

 

Key words: Explosion, impulse load, fragment load, blast load, dynamics, single 
degree of freedom system (SDOF). 
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SAMMANFATTNING 

När en bomb detonerar skapas en tryckvåg, varvid bombens mantel fragmenteras och 
mängder av splitter frigörs med mycket hög begynnelsehastighet. Splittrets påverkan 
på en konstruktion behandlas ofta på ett förenklat sätt men utförda studier visar att 
splitter tillsammans med stötvågen påtagligt kan skada en armerad betongkonstruktion 
som ligger i nära anslutning till explosionen. Fokus i detta projekt ligger därför på att 
simulera splitter och dess inverkan på ett mer nyanserat sätt för att kontrollera hur 
resultaten skiljer sig gentemot förenklade analyser. 

En fritt upplagd, armerad betongbalk med geometri och armeringskonfiguration 
motsvarande en skyddsrumsvägg analyseras. Stötvågen behandlas konsekvent som en 
jämnt utbredd impulslast, med konstant varaktighet och amplitud, medan splittrets 
inverkan på balken analyseras på olika sätt för att undersöka hur responsen från 
förenklade analyser skiljer sig mot mer avancerade. Även splittrets anslag och 
inträngning i betongen analyseras, varvid balken förlorar lastkapacitet och massa. 

För att kunna analysera sådana komplexa problem har tidsberoende, finita 
elementanalyser utförts i det generella finita elementprogrammet ADINA. Resultaten 
från dessa analyser har jämförts med förenklade enfrihetsgradsanalyser samt 
förenklade handberäkningar för att kunna verifiera resultaten. 

Rörande inverkan av splitterlastens utseende visar sig förenklade och mer nyanserade 
analyser ge likvärdiga resultat. När balkens förlust av styvhet och massa, i samband 
med splitterinträngning, beaktas visar sig detta dock ha en betydande inverkan på 
balkens dynamiska beteende. 

 

Nyckelord: Explosion, impulslast, splitterlast, stötvågslast, dynamik, enfrihetsgrad–
system (SDOF). 
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Notations 

Roman upper case letters � Area �� Equivalent area in state 1 ��� Equivalent area in state 2 ��� Area of concrete �� Area of reinforcement in tension zone ��� Area of reinforcement in compression zone � Width of cross section � Young’s modulus ��� Young’s modulus for concrete, mean value ��.
��� Fictive Young’s modulus for the beam, concerning state 1 and 2 �� Young’s modulus for steel 
 Force 
� Concrete force 
�� Load when first crack appears 
� Equivalent load 
�� External load corresponding to the plastic capacity 
��� Load when the reinforcement starts to yield 
� Steel force in tensioned reinforcement bars 
�� Steel force in compressed reinforcement bars �� Internal resisting moment � Height of cross section � Impulse, moment of inertia �� Moment of inertia for state 1 ��� Moment of inertia for state 2 ���� Moment of inertia for state 3 � Stiffness �� Stiffness in the elasto-plastic range �� Stiffness in state 1 ��� Stiffness in state 2 � Length � Mass, Moment �� Fragment distribution factor �� Equivalent mass �� Bomb shell mass �� Internal resisting moment �� Moment when the reinforcement starts to yield � Pressure �� Positive peak pressure �� Negative peak pressure � Load, mass of explosive � Internal resisting force, distance from the detonation to the structure under 
consideration �� Equivalent resisting force �  Maximum internal resisting force ���!� Internal static force 
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�"�# Internal dynamic force $� Duration of positive phase $� Duration of negative phase %� External energy %� Internal energy %& Kinetic energy ' Flexural resistance '�� Elastic flexural resistance '�� Plastic flexural resistance 

 

Roman lower case letters ( Acceleration ) Damping constant * Effective height of cross section *� Distance between the top reinforcement and the compressed edge + Height of the elastic zone of the cross-section ,�� Compressive strength for concrete ,�� Yield stress for concrete ,��� Stress for which concrete cracks ,�& Characteristic yield stress for reinforcement - Impulse intensity -� Positive impulse intensity -� Negative impulse intensity . Mass .� Fragment mass / Number of fragments 0 Momentum 01 Atmospheric pressure 2 Distributed load 3 Time 3! Arrival time for the pressure wave ∆3 Time increment 5 Displacement 5�� Displacement when first crack appears 5�� Elastic displacement 5�� Displacement corresponding to the ultimate load 5��� Displacement when the reinforcement starts to yield 56  Displacement velocity 57  Acceleration 8 Velocity 81 Initial velocity 9 Coordinate, height of compression zone 9:� Centre of gravity ; Coordinate < Coordinate, distance from neutral axis to a certain level of the cross-
section <� Distance between reinforcement in tensile zone and the neutral axis 
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<�� Distance between reinforcement in compressive zone and the neutral axis 
 

Greek lower case letters = Relation between the Young’s modulus between concrete and 
reinforcement, parameter considering the shape of the blast wave =� Stress block factor >� Stress block factor ? Strain ?6 Strain rate ?� Strain in concrete ?�@ Strain in compressed concrete ?�A Strain in tensioned concrete ?�B Ultimate compressive strain in concrete ?� Steel strain ?�� Steel strain in compressed reinforcement ?�� Yield strain in steel ∆? Difference in strain C Reduction factor for the elasticity of modulus DE Transformation factor for the internal force DEF Combined transformation factor for the internal force and external load D  Transformation factor for the mass D F Combined transformation factor for the mass and external load DF Transformation factor for the external load G Density 

φ Diameter H Stress H� Concrete stress H�@ Concrete stress in compressive zone H�A Concrete stress in tensile zone H
��� Stress when the beam goes from linear elastic to ideally plastic response H� Steel stress H�� Steel stress in compressed reinforcement H� Yield stress I Angular frequency 
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1 Introduction 

1.1 Background 

Explosives are used for many different purposes in today’s society. In the building 
industry explosives are used as an efficient method to demolish structures and to make 
space for roads and railways. Explosives play, in this context, an important role in 
order to improve the infrastructure.  

Explosions can, on the other hand, also be a threat for both society and for human 
beings and explosives are unavoidable tools during war and terrorist attacks. An 
explosion can also occur by accident and cause large damage. These kinds of actions 
may be devastating and there is a need to improve the knowledge about explosions in 
order to make society more resistant against such events. 

Swedish Rescue Service Agencies (Räddningsverket) has for several years run 
projects concerning explosions and their impacts. In previous projects most of the 
focus has been either on the blast wave or on fragment loading, while the combined 
load part from these two often has been either neglected or simplified approximately. 
However, it has been discovered by recent research (Leppänen, 2009 and Nyström, 
2008) that the fragmental load plays a substantial part of the total damage obtained by 
the blast- and fragment loads.  

 

1.2 Aim 

The main goal for this work is to increase the knowledge about how explosions affect 
concrete structures. A structure subjected to combined blast load and impact loading 
is studied, but focus will be on how fragments from a bomb should be considered 
when a structure is subjected to an explosion. In this thesis different ways to apply the 
fragmental load are studied and should result in recommendations and guidelines 
about how fragments should be taken into account. 

 

1.3 Method 

Literature studies have been done in order to obtain knowledge and understanding 
how structures behave when they are exposed to dynamic loadings. The studied case 
is taken from the Swedish shelter regulations, Räddningsverket (2006), and is 
analysed using a SDOF system (single degree of freedom) and hand calculations and 
compared to the “true” behaviour which is obtained by a commercial finite element 
software. 

 

1.4 Limitations 

Concrete is a complex material, which requires advanced calculations, and hence 
simplified material behaviors have been used in this project. These are linear elastic, 
ideally plastic and bi-linear elasto-plastic material properties. Material effects such as 
shrinkage, creep, temperature and the dead weight is not considered in the concrete 
calculations. 
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A reference case from Räddningsverket (2006) is used in this thesis where a civil 
shelter is exposed to impact from an explosion. The geometry and material 
requirements are chosen in accordance to the regulations stated in 
Räddningsverket (2006). 

The fragmental impact which occurs during the penetration phase will not be analysed 
in this project, instead an approximated method used, which simulates the removal of 
concrete, is used. 

 

1.5 Outline of the report 

The outline of the report can be divided into basic theory (Chapter 2), conditions and 
choices (Chapter 3), FE-model (Chapter 4), Results (Chapter 5) and conclusions 
(Chapter 6). 

Chapter 2 is an introduction to explosions and in a comprehensive way describes the 
loads and their effects. It also describes important parts in a general way for a good 
understanding in the rest of the report, such as: materials, basic concrete material 
properties and how to analyse it, basic dynamics, and single degree of freedom-
system.  

Chapter 3 can be seen as a continuation of chapter 2, the conditions and choices for 
further analysis is presented. A more careful description of the loads is presented and 
also how the subdivision of the fragment loads is performed. 

Chapter 4 describes the FE models, the input data and how the models are built up. 

Chapter 5 presents the results from the analysis, for the linear elastic, plastic as well as 
the elasto-plastic response. Displacements are mainly presented and compared to the 
results obtained by SDOF and simplified hand calculations. The results from the 
removal of material due to the loads are also presented in chapter 5. After each section 
in this chapter, a conclusion regarding the result is presented. 

Finally, Chapter 6 is a discussion where the results are concluded and the authors give 
their own reflections and recommendations about how the fragmental load should be 
considered. 

 

1.6 Comments about references 

Large parts of the theories presented in this report are based on, and sometimes 
directly collected from other reports. This means that the reader is sometimes not 
referred to the main source but referred to a report where material from the main 
source is used and where the reference to the main source can be found. The theory 
presented in this report is mainly based on the following reports; Johansson and Laine 
(2009), Leppänen (2009), Nyström (2006) and Nyström (2008). 

Material has also been collected from Räddningsverket (2006), in swedish: 
Myndigheten för samhällsskydd och beredskap, denoted as MSB in this report. This is 
an authority responsible for unifying, coordinating, and supportive tasks prior to, 
during and after emergencies in Sweden. This authority was formed from three 
existing national government authorities on the 1st January 2009. Former reports 
might refer to the Swedish Rescue Services Agencies which was one out of the three 
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former authorities. MSB has published the Swedish Shelter Regulation (SR) which 
will be an important reference in this work.  
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2 Basic theory 

2.1 Outline 

A structure subjected to an explosion will have a complex behaviour. Good 
knowledge about the properties of the load, the material response, the dynamical 
behaviour of the structure and analytical tools is necessary in order to analyse the 
response of the structure. Basic theory within these subjects is presented in this 
chapter. 

 

2.2 Explosions 

2.2.1 Orientation 

A bomb consists of a charge with a certain amount of explosives and a shell with a 
certain mass. A bomb can be seen as stored potential energy which will be 
transformed into mechanical work when the bomb detonates. The impact on a 
structure from an explosion can be divided into impact from the blast wave and 
impact from fragments which are released when the bomb case cracks.  

 

2.2.2 Blast wave 

When the charge detonates, a blast wave with high pressure and temperature will 
spread out from the centre of the detonation, see Figure 2.1. The pressure will 
decrease with increasing distance from the detonation centre and the pressure front, 
referred to as the blast wave, will travel in supersonic speed. A blast wave consists of 
a positive and a negative phase and an idealized wave is illustrated in Figure 2.2. As 
can be seen, the positive phase is followed by a negative one. 

 

 

Figure 2.1  Schematic figure for detonation in air . 

Centre of detonation 

The pressure and temperature 
in the blast front decreases with 
increased distance to the centre 
of detonation 
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Figure 2.2 Idealized blast wave 

The duration of the shock wave is very short and the load is applied very sudden. The 
loading velocity for a shock wave can be compared to other types of loads, see 
Figure 2.3. The reference case is a static load which is equal to 1 and for example, the 
creep is 100-1000 times smaller and a blast load is up to 100 million times larger. 
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Figure 2.3 Difference in loading velocity between different types of loading, the 

values are obtained in relation to static load. From Räddningsverket 

(2006). 

 

2.2.3 Fragments 

2.2.3.1 Fragmentation 

In addition to the blast wave, fragments will be released during the explosion. The 
appearance of the fragmentation process is directly affected by the properties of the 
bomb. This is why the properties and geometry of the bomb has to be known in order 
to predict the fragmentation. 

When the bomb detonates, very high pressure is generated inside the bomb. The case 
will expand and tensile stresses are generated causing the envelope to crack into small 
fragments, see Figure 2.4. 
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Figure 2.4 Fragmentation process of the case, Leppänen (2009). 

A bomb consists of a charge with a certain amount of explosives and a case, see 
Figure 2.5. The case consists of a nose, a tail and an envelope. The distance from the 
surface of the bomb to the outer parts of the charge is normally much thicker in the 
nose and the tail compared to the envelope, something that also affect the 
fragmentation process.  

The fragments will be thrown out at high velocities in directions indicated by the light 
grey segments in Figure 2.5. The nose and tail will be separated from the bomb and 
thrown out in opposite directions as indicated by the darker arrows in Figure 2.5.  
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Figure 2.5 Schematic geometry of a bomb with the charge and the parts of the case 

with direction for how these parts behave when the charge detonates.  

A structure that is hit by fragments will be exposed to an impact load that not only 
will increase the load on the structure but also locally damage the structure. How the 
structure is damaged depends on the magnitude of the fragmental impact and the 
properties of the structure itself. Three phenomenon can occur; penetration, 
perforation and scabbing. These will be explained in the following sections with a 
schematic description in Figure 2.6. 

 

Figure 2.6 Different fragmental impacts, Leppänen (2009). 
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2.2.3.2 Penetration 

A fragment that hits a concrete structure will penetrate into the structure. The concrete 
close to the surface will crush and a crater is formed i.e. spalling. In regions close to 
the crater the concrete will substantially crack and the effective height of the structural 
part will decrease, resulting in a reduced bearing capacity for the structural part. The 
reinforcement can also be cut off or get damaged, and the bond between concrete and 
reinforcement may decrease due to vibrations in the concrete during the penetration. 

The penetration depth can, according to Leppänen (2009) be approximated as: 

9 J 26.9 · .
1.OP · 8
1.Q,�1.AR  for 9 S 117 · .
@/O 
 

and   (2.1) 

9 J 4.35 · .
1.Z · 8
@.[,�1.R \ 40.6 · .
@/O for 9 ^ 117 · .
@/O 
 

where mf is the mass of the fragment in [kg], vf is the velocity of the fragment when it 
hits the structure in [m/s] and fc is the compressive strength of concrete in [Pa]. 

Penetration depths as function of the velocity for fragments with different mass are 
presented in Figure 2.7.  

 

Figure 2.7 Penetration depths as a function of velocity for different fragment 

masses. 
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2.2.3.3 Perforation 

Perforation is the same as penetration with the difference that the fragment penetrates 
through the beam. As a rule of thumb Leppänen (2009) means that, if 70 % of the 
concrete member is penetrated, perforation will occur. 

 

2.2.3.4 Scabbing 

When the fragment hits a concrete structure, extruding at the back side may occur, so 
called scabbing. This happens because the pressure wave in the concrete created by 
the fragment impact will be transformed into a tension wave at the back side of the 
beam, causing the concrete to crack. This is a phenomenon also influenced by the 
blast wave. 

Leppänen (2009) refers to Krauthammer, who means that as a rule of thumb can be 
used what concerns scabbing, which follows: if fragments are penetrating 50 % or 
more of the members’ thickness, scabbing will occur. 

 

2.2.3.5 Fragmental distribution 

The complexity of the geometrical properties of a bomb results in a non uniformly 
distribution of fragment when the charge detonates. As mentioned in section 2.2.3.1, 
the tail and the nose will remain fairly intact and thrown out as large masses in 
opposite directions, see Figure 2.8. The small fragments released from the envelope 
will be thrown out as a relatively concentrated swarm. According to Leppänen (2009) 
it is a good estimation to say that 60 percent of the total mass of the case will be 
thrown out as small fragments within an angle of 40 degrees as shown in Figure 2.8, 
which shows a simplified bomb compared to Figure 2.5. 

The fragmental impact from a bomb on a structure will be very different depending on 
the position of the bomb when it detonates, i.e. if the structure is exposed to the small 
fragments within the swarm or for the large fragments made up of the nose and tail.  

 

   Charge 
    Case 

    40° 

    Tail direction 

  Nose direction 
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Figure 2.8 Simplified figure of a bomb with fragmental distribution after 

detonation. 

 

2.2.3.6 Fragment velocity 

The initial velocity of a fragment directly after the fragmentation is a function of the 
amount of explosives inside the bomb and the mass of the case and can, according to 
Leppänen (2009), be calculated as: 

81 J 2400 · _1 ` +�A·a/ bc (2.2) 

where Q is the mass of the explosives and Mh is the mass of the bomb shell. 

The velocity of a fragment is decreased by the air resistance as a function of the 
distance from the centre of the detonation and the mass of the fragment itself. The 
velocity of a fragment at a certain distance from the centre of the detonation is, 
according to Leppänen (2009), defined as: 

8�d�,�fg J 81 · +�1,1ZRh·�/ i�fj
 (2.3) 

where R is the distance from the centre of the detonation and .� is the mass of the 
fragment. Fragment velocities as function of fragment mass at a distance of 5 meters 
are presented in Figure 2.9. 

 

Figure 2.9 Relation between striking velocities and mass for a distance R=5 m, 

initial velocity of 1950 m/s and 125 kg TNT. 

It can be observed that fragments with larger mass will have higher velocity at a 
certain distance than fragment with smaller mass. This is due to that the air resistance 
can decelerate a lighter fragment more efficiently. The effect is most obvious when 
the fragmental weight is less than about 5 gram. 
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2.2.3.7 Fragment mass distribution 

When the bomb envelope cracks, fragments with different mass (i.e size since the 
envelope consists of homogenous material) are released. The mass distribution of 
these fragments is different for different kinds of bombs.  

Leppänen (2009) uses the following empirical expression to calculate the mass 
distribution: 

/d�kg J ��2 · �� +�l�k m  (2.4) 

where /d�kg is the number of fragments with a mass larger than ms, Mh is the total 
mass of the case and MA is a fragment distribution factor depending on the type of 
bomb. 

 

2.3 Dynamic modification of concrete 

A concrete structure exposed to dynamic load behaves different compared to a 
structure exposed to static load, especially for an intense impulse load with very short 
duration. This can partly be described by the structural response which behaves 
differently due to the time effects and also the material properties changes 
substantially. 

The strain velocity ?6 describes how fast the material deforms and is defined as the 
strain per unit time: 

?6 J ∆?∆3 
(2-5) 

The faster the load is applied to the structure, the higher the strain rate will be. In 
experimental tests it has been discovered that for increased strain rates the dynamic 
magnification factor, defined as the relation between the dynamic and the static 
strength, increases for concrete in both compression and tension. The dynamic 
magnification factors are presented in Figure 2.10 and Figure 2.12 for compression 
and tension respectively with varying strain velocities.  
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Figure 2.10 Relation between dynamic magnification factor and strain velocity for 

compressed concrete. Räddningsverket (2006). 

 

Figure 2.11 Relation between dynamic magnification factor and strain velocity for 

tensioned concrete. Räddningsverket (2006). 

The behaviour can be explained by study the crack paths when the material cracks, 
see Figure 2.12. When a concrete structure is exposed to a static load, the material 
will find the most energy efficient way to reach failure. Since the aggregates are 
stronger than the paste, in normal strength, the crack will go through the paste and 
around the aggregate to find “the weakest way” when static loading is applied. For a 
dynamic load with short duration the material will find the fastest way to reach 
failure. The crack will now go straight through the paste and the aggregate. More 
energy is consumed in the latter case and this is one reason for an increased resistance 
can be assumed for a dynamic load with short duration. 
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Figure 2.12 Principle crack paths for static and dynamic loads respectively. Based 

on Räddningsverket (2006). 

A concrete beam subjected to a dynamic load will behave different compared to a 
static case. When the load is applied very fast there can be local failures in the beam 
before other parts of the beam and the supports even are aware of the load. This can 
be explained by that it takes a certain time for the information to be spread out along 
the beam. The velocity for which information is spread in concrete is approximately 
3500 m/s. Hence, for a beam with a length of 2.7 m it will take 2.7/(2·3500) ≈ 0.39 ms 
for the information of a load acting in the mid section to reach the support. Hence, it 
will take a total of 0.78 ms for the information to go to the support and back to the 
loaded midsection again. The phenomenon is illustrated in Figure 2.13 where a typical 
example of direct shear failure is shown. 

 

 

Figure 2.13 Principle initial behaviour of beam subjected to a dynamic uniformly 

distributes load. 

 

2.4 Materials 

2.4.1 Material responses 

The response of a structural system when subjected to a certain load depends on the 
material responses in the structural parts and the boundary conditions between the 
parts. This is why it is important to predict the material response in a structural part in 
order to predict the global response of the structural system. 

The true response of a building material exposed to a load is often complex with both 
linear and non-linear stages. It is, however, possible to simplify the behaviour in a 
satisfactory way. Ideally elastic, plastic or elasto-plastic responses are examples of 
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simplifications of a complex material response. These three responses will be 
explained in the following sections. Of these simplifications, the bilinear elasto-plastic 
is the most realistic response of a reinforced concrete structure and closest to the true 
behaviour, but the elastic and plastic are also analysed in order to increase the 
understanding. 

 

2.4.1.1 Linear elastic material  

The relation between stress and strain in the linear elastic material response can be 
seen in Figure 2.14. The stress, σ, is linearly proportional to the strain, ε, and the curve 
originates from Hook’s law: 

where E is the Young’s modulus. 

When the load is removed for a structure with linear elastic response the member will 
go back to its original position and the material will not gain any permanent 
deformations. 

 

 

 

 

 

 

Figure 2.14 Linear elastic material response, where (a) is the material response and 

(b) the structural response. 

Since the material properties are linear, the internal resisting force will also behave 
linearly. That means the resisting force, R, which the structure gains when it deflects, 
is linearly proportional to the deflection, u, i.e.: � J � · 5 (2-7) 

where K is the system’s stiffness. 

 

2.4.1.2 Ideal plastic material 

The relation between stress and strain in the ideal plastic material response can be 
seen in Figure 2.15. The body will stay undeformed as long as the applied stress is 
lower than the yield stress, σy. Once the yield stress is reached, though, the strain will 
increase without increased stress.  

H J � · ? (2-6) 
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Figure 2.15 Ideal plastic material response, where (a) is the material response and 

(b) the structural response. 

The internal resisting force, R, for a body with plastic material response that is 
exposed to a load, F, can be expressed as: � J 
 for 
 n �� i.e. 5 J 0 (2-8) 

� J �� for 
 o �� i.e. 5 p 0  

where Rm is the maximum internal force. 

 

2.4.1.3 Bilinear elasto-plastic material 

The bilinear elasto-plastic material response is a combination of the linear elastic and 
plastic response and is equal to the linear elastic response until the material/materials 
yields. As can be seen in Figure 2.17 the material response will be plastic after 
yielding is initiated. The deformation after yielding is unlimited assuming ideal plastic 
material behavior. When the structure is unloaded after the yield stress is passed, the 
response will follow the linear elastic stiffness as shown in Figure 2.17.  

 

 

Figure 2.16 Bilinear elasto-plastic material response where (a) is the material 

response and (b) the structural response. 
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In the plastic response the structure will, if passing the yield strength, gain permanent 
deformations and also consume much more energy compared to the linear elastic 
response for the same load.  

The expression for the internal force needs to be divided into two intervals, one for 
the elastic part and another one for the plastic part, see equations (2-9). � J � · 5 For    
d3g n ��    (2-9) 

 � J �� For    �� S 
d3g   

where K is the stiffness of the systems and Rm is the maximum value of the resisting 
force. 

 

2.4.2 Theory of plasticity and plastic hinges 

A beam with elasto-plastic material response that is exposed to a bending moment 
will start to yield when the moment give rise to stress in the outer fibres in the most 
critical section that is equal to the yielding stress of the material. The material will 
have elastic response until yielding is reached. As can be seen in Figure 2.17a the 
stress distribution will be linearly distributed over the height of the cross section as 
long as the stress is equal to or less than the yielding stress in the outer fibres. When 
the moment increases further, more fibres has to yield in the cross-section in order to 
increase the internal resisting moment, see Figure 2.17b. When all fibres over the 
height of the cross section have reach the yielding stress, see Figure 2.17c, the 
maximal internal moment is reached, the plastic moment.   
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Figure 2.17 Stress and strain distribution for beam subjected to pure bending when 

a) yielding starts in the outer, most stressed fibres, b) parts of the cross 

section has yielded and c) the whole section has yielded. 

The internal resisting moment can be calculated as: �� J ' · H� (2-10) 

where Z is the flexural resistance and σy is the yield stress. 

The flexural resistance can for a partly plastic section be calculated according to 
equation (2-11) and Figure 2.18. 

' J � · q�A4 ` +A12r (2-11) 
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Figure 2.18 Stress distribution when the cross section goes from elastic to fully 

plastic. 

When the material starts to yield, Figure 2.17a, the stress distribution is equal to the 
elastic stress distribution and the flexural resistance is: 

'�� J � · q�A4 ` �A12r J ��A6  (2-12) 

The flexural resistance for a fully plastic section, Figure 2.17c, is: 

'�� J ��A4  (2-13) 

When the beam reaches its fully plastic capacity in the most stressed section, the 
majority of the deformations will occur in this region, which will generate a large 
plastic rotation. This rotation will be rather concentrated, which makes it possible to 
assume that all the deformation takes place in this region. A small, deformable 
element over which all the deformations occurs is called a plastic hinge and for a 
simply supported beam a failure mechanism is formed when one plastic hinge is 
created in the most critical section, i.e. the mid section, see Figure 2.19.  

 

Figure 2.19 Plastic hinge for a simply supported beam. 

 

2.5 Simply supported reinforced concrete beam 

2.5.1 Mechanical properties 

A simply supported, reinforced concrete beam will have different behaviour for 
different load magnitudes. The stiffness of the beam for a certain load magnitude will 
be strongly influenced by the material properties of concrete and steel and the 
geometrical properties of the cross section. Three different states: uncracked, cracked 
and failure, can be distinguished for the beam. The behaviour of a reinforced concrete 
beam can be described by the load versus displacement relation shown in Figure 2.20 
with its various states.  
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As long as the beam is uncracked, i.e. the tensile stress in the concrete is lower than 
the tensile strength, the bending stiffness of the beam is high and the reinforcement 
has small influence on the member’s stiffness. The displacement will increase linearly 
for an increased load and the beam is said to be in state I. 

The concrete cracks when the tensile stress in the most critical section reaches the 
tensile strength for concrete. Tensile forces will now be carried by the reinforcement 
and the stiffness in the cracked sections will decrease. When the load increases, more 
and more sections will crack but the displacement will still increase linearly for 
increased load. The beam is said to be in state II. 

When the load is further increased, the tensile stress in the reinforcement will finally 
reach the yielding stress. The beam will now get a plastic behaviour and the 
displacements increases for almost constant load amplitude. A small increase of the 
load is possible due to strain hardening in the reinforcement and/or increased internal 
lever arm due to reduced height of the compression zone. Either, the compressive 
stress in the concrete will exceed the maximum capacity and the concrete will get 
crushed in compression or the tensile strength in the reinforcement is passed and a 
tensile rapture occurs in the beam. The beam is said to be in state III.  

Finally, the beam cannot endure the load and there will be a flexural failure. The 
failure can be either ductile or brittle depending on the relation between the quality 
and arrangement of reinforcement and the quality of the concrete. 
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Figure 2.20 Schematic figure of the response of a reinforced concrete beam with 

ductile as well as brittle behaviour, based on Johansson and Laine, 

(2008). 

The load versus displacement relation in Figure 2.20 may be simplified in order to 
simplify the calculations. Figure 2.21b shows a common choice of a simplified tri-
linear load versus displacement relation. Fcr is the load for when cracking occurs and 
ucr the corresponding displacement and Fpl is the value for the load when the ultimate 
capacity of the concrete is reached and upl the corresponding displacement. The curve 
can be even more simplified by a bi-linear load versus displacement curve, see 
Figure 2.21a. Such a simplification is possible to do when the displacements are 
known to be large. The area under the load-displacement curve can be seen as 
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consumed energy while the beam deflects and the difference in consumed energy 
between the tri-linear the bi-linear curve will be relatively small when the 
displacements are relatively large. In Nyström (2006), it is stated that the effect of 
using a tri-linear material response compared to a bilinear response is very small and 
that is also why the bilinear material response is adopted in this thesis. 

 

Figure 2.21 Simplified load versus displacement relations; a) common choice of 

simplified load versus displacement curve, b) load versus displacement 

curve used in this report. 

2.5.2 Analysis of cross-sections subjected to bending 

2.5.2.1 Orientation 

Analysis of a reinforced concrete section has to be performed for each state since the 
behaviour of the cross section changes when the concrete cracks and when the 
reinforcement yields. Assumptions and theories for analysis in each state are 
presented in the following sections. 

2.5.2.2 Assumptions 

The following assumption has been made in order to calculate the response for a cross 
section: 

• The section is assumed to be subjected to pure bending which means that no 
axial force is present. 

• The strain distribution is assumed to be linearly distributed over the cross-
section with full interaction between concrete and steel. 

• Concrete in tension will be neglected for a cracked section even if the concrete 
can carry a small part of the tensile forces. 

• It is assumed that the steel will yield before the ultimate capacity of the 
concrete in the compressed edge is reached. 

• In state I and state II linear elastic response is assumed for both steel and 
concrete:     H� J ��� · ?� ( 2-14) H� J �� · ?� ( 2-15) 
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2.5.2.3 Reinforced cross section in state I 

Figure 2.22 shows a double symmetric cross section in state I subjected to pure 
bending. The centre of gravity will coincide with the neutral axis (where the normal 
stress is zero). The tensioned reinforcement is placed in the tensile zone at a distance 
zs from the neutral axis. <� J * ` 9:� ( 2-16) 

The compressed reinforcement is placed in the compressed zone at a distance z’s from 
the neutral axis. <�� J *� ` 9:� ( 2-17) 

 

Figure 2.22 Double symmetric cross section in state I with strain distribution, 

subjected to pure bending. 

The moment of inertia for a cross section in state I can be calculated by neglecting the 
relatively small contribution from the reinforcement: 

�� J tuO12  (2-18) 

The stress in the concrete at a certain level z is calculated as: 

H�d<g J ��� < (2-19) 

The stress in the steel is calculated as: H� J = · H�d<�g (2-20) H�� J = · H�d<��g (2-21) 

where α is the ratio between the Young’s modulus of steel and concrete: 
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= J ���� (2-22) 

The section will start to crack when the stress in the most tensioned edge reaches the 
concrete tensile strength, fct, and the moment for which cracking occurs can now be 
calculated by rearranging the terms in equation (2-19). 

��� J ,�� · ��u ` 9�: (2-23) 

2.5.2.4 Reinforced cross section in state II 

In state II the section is assumed to be cracked and concrete in tension is neglected, 
see Figure 2.23.  

 

 

Figure 2.23 Double symmetric cross section in state II with strain distribution, 

subjected to pure bending. 

Calculations in state II is often simplified by replacing the steel and concrete with an 
equivalent cross section. The expression of the equivalent area for a double symmetric 
cross-section in state II is written as: ��� J ��� \ d= ` 1g��� \ = · �� (2-24) 

where Acc is the area for the compressed zone, i.e. ��� J t · 9 (2-25) 

For a cross section subjected to pure bending, i.e. no normal forces, the height x of the 
compressed zone will coincide with the centre of gravity of the transformed cross 
section, i.e. 9 J 9vw (2-26) 

The expression for the centre of gravity can be written by considering an equilibrium 
condition as:  

9vw J t9 92 \ d= ` 1g��� *� \ =��*���  (2-27) 
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The expression for the height of the neutral layer can now be written by combining 
equation (2-24) and equation (2-27) and rearrange the terms as: 

t · 9A2 \ d= ` 1g��� d9 ` *�g ` = · ��d9 ` *g J 0 
(2-28) 

where x can be determined by solving the second order equation (2-28). The moment 
of inertia for a concrete section in state II is calculated as: 

��� J t9O3 \ d= ` 1g��� d9 ` *�gA \ =��d* ` 9gA (2-29) 

The concrete stress at a certain distance z from the neutral layer can now be calculated 
in the same way as for the section in state I: 

H�d<g J ���� < (2-30) 

The steel will start to yield when the stress in the tensioned reinforcement reaches the 
characteristic yielding stress. The fictive concrete stress can be calculated at the 
reinforcement layer as: 

H�d<�g J ���� <� (2-31) 

The yield stress, fy, can now be expressed as:  ,� J = · H�d<�g (2-32) 

By inserting equation (2-31) into equation (2-32) and rearrange the terms the 
expression for the moment when the tensile reinforcement yields, My, can be written 
as: 

�� J ,����=<�  (2-33) 

 

2.5.2.5 Reinforced cross section in state III 

In state III the reinforcement in tension has reached yielding. The compressive stress 
in the concrete will increase and the assumption about linear stress distribution is no 
longer valid for concrete. The non-linear stress distribution however can be simplified 
with a rectangular stress distribution by using a factor αc and a factor βc which takes 
into account the average stress and the location of the force resultant for the concrete 
respectively, see Figure 2.24.  
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Figure 2.24 Double symmetric cross section in state III with strain distribution, 

subjected to pure bending. 

The failure criteria for a cross-section with flexural cracks and hot-rolled reinforcing 
steel subjected to pure bending is limited by the maximum compressive strain in the 
concrete, εcu .  ?�B J 3.5 · 10�O (2-34) 

When this maximum value of the compressive strain in concrete is reached, the cross-
section is about to fail and has reached its ultimate limit. 

The parameters αc and βc are functions of the strain in the compressed concrete. The 
values for these parameters when the maximum strain is reached in the concrete 
C25/30 is: 

Table 2.1 Concrete parameters in ultimate limit state for classes C12/15-C50/60, 

Engström (2008). 

αc 0.81 

βc 0.416 

The height of the compression zone x can be calculated from the condition that the 
sum of the forces Fc in the compressed concrete, Fs in the tensile reinforcement and 
Fs’ in the compressive reinforcement (assumed to be compressed) should be equal to 
zero, i.e.: ,� · t · =� · 9 \ H�� · ��� ` ,� · �� J 0 (2-35) 

The stress in the compressed reinforcement is calculated as a function of the ultimate 
strain in concrete and the location of the compressed reinforcement. 

H�� J �� · d9 ` *�g9 · ?�B when ?�� S ?�� (2-36) 

H�� J ,� when ?�� o ?�� (2-37) 

where yield strain for the reinforcement can be calculated as: 
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?�� J ,��� (2-38) 

The moment, Mu, when the ultimate limit of the cross-section is reached can now be 
calculated by considering the moment around the tensile reinforcement as: �B J =� · ,� · t · 9 · d* ` >� · 9g \ H�� · ��� · d* ` *�g (2-39) 

 

2.6 Load-displacement relations for simply supported 

beam subjected to uniformly distributed load 

Consider the simply supported beam in Figure 2.25. The beam is subjected to a 
uniformly distributed load F=q·L. 

 

Figure 2.25 Simply supported beam with uniformly distributed load. 

The maximum moment will occur in the mid section of the beam and can be 
calculated as: 

� J 
2 · �2 ` 
� · �2 · �4 J 
 · �8  (2-40) 

If a restriction concerning the moment in the mid section is known, the corresponding 
load can be calculated as: 


 J 8 · ��  (2-41) 

The stiffness K for the beam in Figure 2.25 can be calculated according to linear 
elastic theory as: 

� J 384��5�O  (2-42) 

The deflection u in the mid section can be expressed as a function of the applied load 
and the stiffness as: 

L 

q=F/L 
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5 J 
� (2-43) 

 

2.7 Basic dynamics 

2.7.1 Orientation 

In order to understand how an explosion affects a concrete structure, good knowledge 
in dynamics is necessary. Basic dynamic expressions will be presented and explained 
in the following sections. 

 

2.7.2 Force and pressure 

A force can be seen as the capability to accelerate mass. The relation between Force, 
F, mass, m, and acceleration, a, is defined according to Newton´s law of acceleration: 
 J . · ( (2-44) 

Pressure, P is defined as force per unit area, A, as: 

� J 
� 
(2-45) 

2.7.3 Momentum, impulse and impulse intensity 

For a body with mass . and velocity v, the momentum p is defined as: 0 J . · 8 (2-46) 

If the body is subjected to a force, F=F(t), during a certain time, see Figure 2.26, the 
new momentum can be written: 

. · 8@ J . · 81 \ y 
d3g*3�z
�{

 

 

(2-47) 

The integral in equation (2-43) is the change of momentum and is defined as the 
impulse, I, transmitted to the body.  

∆0 J � J y 
d3g*3�z
�{

 (2-48) 
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Figure 2.26 Force acting on a body. 

For pressure loads the term impulse intensity is used and is equal to the impulse over a 
certain area: 

- J �� J y �d3g*3�z
�{

 (2-49) 

 

2.7.4 Momentum and kinetic energy 

Consider a collision between two bodies where the first body has a mass m1 and 
velocity v1 and the second body has a mass m2 and velocity v2. Assuming that the two 
bodies are attached to each other after the collisions, see Figure 2.27.  

 

Figure 2.27 Collision between two bodies. 

The law of conserved momentum yields: .@8@ \ .A8A J d.@ \ .Ag8@A (2-50) 

The unknown velocity for the two bodies, attached to each other, can be calculated as: 
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8@A J .@8@ \ .A8A.@ \ .A  
(2-51) 

If the initial velocity of the second body is equal to zero, the law of conserved 
momentum yields: 

8@A J .@.@ \ .A · 8@ (2-52) 

If m2 is much larger than m1, equation (2-52) can be simplified to: 

8@A J .@8@.A            ����"�|}}}~          .@8@ J .A8A (2-53) 

The larger body will stop the movement of the smaller body with a certain force, 
during a certain time. This can also be seen as that impulse is transmitted from the 
smaller body to the larger body during the collision. 

The kinetic energy for the larger body is: 

%& J .A8AA2  
(2-54) 

Which, by use of equation (2-53) can be written as: 

%& J d.@ · 8@gA2.A J �A2.A 
(2-55) 

 

The kinetic energy can be seen as external energy and in order to stop the movement, 
an equally large internal resisting energy is required.  

 

2.7.5 Internal energy 

2.7.5.1 Concept 

In order to stop the movement, or the deflection, in a structural system exposed to an 
impulse load, the applied external energy has to be resisted by internal energy. The 
internal energy in a resisting structure is provided by a combination of deformation 
and internal resisting forces. A large deflection requires smaller internal forces than a 
small deflection in order to create the same internal energy. The energy equivalence 
will in the following be described for linear elastic, plastic, and bilinear elasto-plastic 
material response. 

 

2.7.5.2 Elastic Response 

For an elastic material, the internal resisting force for an elastic response can be 
written as: �d5g J �5 (2-56) 

where K is the stiffness and u the displacement. 
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The internal resisting energy can be expressed as the area under the curve in 
Figure 2.28 (b) and is equal to: 

%� J �d5g · 5��2 J � · 5��A2  
(2-57) 

where uel is the required displacement in order to equalize the internal energy to the 
external energy. 

A combination of equation (2-55) and (2-57) yields the expression for the elastic 
displacement: 

5�� J �.I 
(2-58) 

where ω is the angular frequency, equal to: 

I J ��. (2-59) 

 

 

F(t) 

R(u) 

m u 

 u

R

Wi

uel

K

  

      (a)                      (b) (c) 

Figure 2.28 System with elastic response: (a) Single degree of freedom system, (b) 

Force displacement relation, (c) Energy equilibrium between external, 

We, and internal energy, Wi. 

 

2.7.5.3 Plastic response 

For a plastic material behavior, the material capacity is limited. Thus, the maximum 
internal resisting force in the structural system is also limited. A large displacement 
capacity in the system is therefore the only way to increase the internal energy. This is 
why a ductile behavior is to be preferred for a plastic material exposed to a dynamic 
impulse load. 

The internal resisting force, R, is constant in a plastic system, see Figure 2.30, and 
equal to: �d5g J � (2-60) 

The internal resisting energy can be written as: 
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%� J �_5��c · 5�� J � · 5�� (2-61) 

where upl is the required displacement in order to equalize the internal energy to the 
external. 

The plastic displacement can be calculated by combining equation (2-55) and (2-61).  

5�� J �A2.� 
(2-62) 
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       (a) (b) (c) 

Figure 2.29 System with plastic response: (a) Single degree of freedom system, (b) 

Force displacement relation, (c) Energy equilibrium between external, 

We, and internal energy, Wi. 

 

2.7.5.4 Elastic-plastic response 

An elastic-plastic material response is a combination of elastic and plastic behavior. 
The internal resisting forces will increase as a function of the displacement up to a 
certain limit where plastic behavior is reached.  

The internal resisting force is defined as: 

�d5g J � �5,    5 S 5��,@ �,       5 ^ 5��,@ � (2-63) 

where uel,1 is the limit for when the material behavior goes from elastic to plastic, 
defined as: 

The internal energy can now be calculated: 

%� J �2 d5��,@ \ 25��,@g 
(2-65) 

The required plastic displacement in order to equalize the internal and external energy 
can now be calculated by combining equation (2-55) and (2-65).  
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5��,@ J �A2.� ` 5��,@2 J 5�� ` 5��,@2  
(2-66) 

where upl is the response for an ideally plastic system. The total displacement can now 
be calculated as: 

5��� J 5��,@ \ 5��,@ J 5�� \ 5��,@2  (2-67) 
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(a) (b) (c) 

Figure 2.30 System with elasto-plastic response: (a) Single degree of freedom 

system, (b) Force displacement relation, (c) Energy equilibrium 

between external ,We, and internal energy, Wi. 

 

2.7.6 The fundamental equation of motion 

A beam subjected to a load F(t), can be seen as a body with a certain mass subjected 
to internal and external forces where F(t) is the external force acting on the body. 
When the beam deflects, an internal resisting force proportional to the deflection will 
appear. This force can be seen as a static force. ���!� J � · 5 (2-68) 

where � is a constant which depends on the support conditions and material 
properties, and 5 is the displacement. 

In addition to the static resistance, a dynamic resistance will be created proportional to 
the velocity. This force can be seen as internal friction when the beam deflects, see 
equation (2-69).  �"�# J ) · 56  (2-69) 

where c is the damping constant and 56  is the velocity for the displacement. 

The equilibrium condition according to Newton equation now yields: .57 \ )56 \ �5 J  
d3g (2-70) 

This equation is referred to as the fundamental equation of motion.  
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In order to simplify calculations regarding the maximum deflection, the dynamic 
internal resistance can be neglected if it is small enough, i.e. if it marginally affects 
the displacement for the time period of interest. This is the case for an explosion in 
which the time to maximum displacement is short and the equation of motion will be 
simplified to: .57 \ �5 J 
d3g (2-71) 
 

2.8 SDOF system 

2.8.1 Orientation 

A simply supported beam can be divided into an infinite number of sections. For an 
applied load, each of these sections will deflect with different magnitude, i.e. the 
beam has an infinite number of degrees of freedom. By simplifying the problem and 
only imitating the first bending mode, see Figure 2.31, the global shape of the 
deflection is approximated in such a way that it is possible to transform the beam into 
a single degree of freedom system, a so called SDOF system, see Figure 2.32. 

 

Figure 2.31 The three first bending modes. 
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Figure 2.32 Transformation of the beam into a single degree of freedom system. 

The main goal when transforming the beam into an SDOF system is to describe a 
motion in a certain point. This point is called the system point. It can be chosen 
anywhere over the length of the beam but since the maximum deflection often is of 
interest, the system point is usually chosen to be in the mid span in case of a simply 
supported beam. 

Second bending mode 

Third bending mode 

First bending mode 
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The SDOF system consists of a single mass, an applied load, an internal resistance 
and a damping which all have to reflect the real system in a satisfied way. The 
damping will decrease the amplitude of the oscillation as function of the mass velocity 
and its influence will only have considerable effects after a certain periods. This is 
why the damping often can be neglected when a beam is exposed to a load originated 
from an explosion since it is the largest deflection during the first period that is of 
interest. In order to transform the beam into an SDOF-system equivalent mass, force 
and resistance have to be used. Transformation factors are derived from assumptions 
regarding energy equivalence between the SDOF and the real system. The 
transformation factors will be explained (and derived) in the following sections. 

 

2.8.2 Differential equation for an SDOF system 

If neglecting the damping, the differential equation for an SDOF system is: ��57 � \ �� J 
�d3g (2.72) 

where notation e denotes equivalent mass, resistance and load, respectively. 

Equation (2.72) can also be written by means of transformation factors as: D �57 � \ DE� J DF
d3g (2.73) 

where M, R and F(t) is the real mass, resistance and load respectively.  

The definition of transformation factors is given by equations (2.74), (2.75) and 
(2.76). 

D J ���  
(2.74) 

DE J ���  
(2.75) 

DF J 
�
  
(2.76) 

Equation (2.73) can be further simplified by introducing another two transformation 
factors: 

D F J D DF  (2.77) 

DEF J DEDF  (2.78) 

It can be shown that κK is equal to κF which result in that κKF will be equal to one, 
Nyström (2006). The final fundamental equation of motion for the SDOF system can 
now be written: D F�57 � \ � J 
d3g (2.79) 
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2.8.3 Transformation factors 

2.8.3.1 Orientation 

Nyström (2006) derives the transformation factors for the mass, load and internal 
force, which all where defined in section 2.8.2. A basic knowledge about how to 
calculate these factors is, however, necessary in order to better understand problems 
that may occur when transforming a beam into an SDOF system. A fundamental 
discussion about how to derive the transformation factors will therefore be presented 
in this section. The reader is referred to Nyström (2006) for a complete derivation of 
the transformation factors. 

 

2.8.3.2 Transformation factor for the mass 

The transformation factor for the mass can be calculated using the condition that the 
oscillation of the equivalent mass in the SDOF system has to generate the same 
amount of kinetic energy as for the real beam. 

%&���F J %&��!� (2.80) 

The kinetic energy for the SDOF system can easily be stated but with the equivalent 
mass and its velocity as unknown. The kinetic energy for the beam can be calculated 
by summing up the contribution from all infinitesimal sections along the beam. The 
mass is here known but the velocities for the sections are unknown. 

The velocity, or the displacement during a very short time, for the system point in the 
beam has to be the same as the velocity of the mass in the SDOF system. The 
deformed shape of the beam is, for a point load or a distributed load, known since the 
first bending mode is assumed. When the bending shape of the beam is known, the 
deflection in all points along the beam can be expressed as function of the deflection 
of the system point. Both sides of equation (2.80) can now be divided by the 
deflection of the system point and the relation between the equivalent and the real 
mass can be calculated. 

The transformation factor for the mass depends thus, for a certain load case, on the 
deflection shape of the beam and can be calculated according to equation (2.81). 

D J 1� y �5d9, 3g5�d3g �A G�*9 J 1� y �5d9, 3g5�d3g �A *9���
��1

���
��1  (2.81) 

where M is the mass, u is displacement, ρ is density and A is the cross section area. 

2.8.3.3 Transformation factor for the load 

The transformation factor for the load can be derived from the condition that the 
equivalent load in the SDOF system should create the same amount of work as the 
total load in the real system does. 

The work is defined as the force acting on a body during a certain distance. In the 
SDOF system the load and the unknown deflection is the same as for the system point 
in the real system. 

The load in the real system is known, and the deflection shape is assumed for a given 
load. The deflection for all sections can now be written as function of the deflection of 
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the system point. The total work in the beam can thus be calculated by integrating the 
contribution from all infinitesimal section, over the length of the beam. When 
calculating the transformation factor for the mass, both sides can be divided by the 
system point’s deflection, leaving the equivalent force as the only unknown. 

The transformation factor for the load can be calculated according to equation (2.82). 

DF J � �5d9, 3g5�d3g � 2d9, 3g*9�����1 � 2d9, 3g*9�����1  (2.82) 

 

2.8.3.4 Transformation factor for the resistance 

The transformation factor for the internal resistance can be derived from the condition 
that the equivalent internal force in the SDOF system should perform the same work 
as the internal resistance in the real system does. 

The resisting force depends on material behavior and is for an elastic material a 
function of the stiffness and constant for a plastic material.  

The total internal work in a beam is a sum of the work performed by moment, shear 
and normal forces. The work performed by shear and normal force, though, is 
relatively small and can often be negligible. The work performed by the moment can 
be calculated by integrating the contribution from every infinitesimal section over the 
length of the beam.  

The reader is referred to Nyström (2006) for a complete derivation of the 
transformation factor for the resistance. The factor can be calculated according to 
equation (2.83). 

DE J 1�5�A y �d9g5��d9g*9 J 15�
� �d9g5��d9g*9�����1� 2d9, 3g*9�����1

���
��1  (2.83) 

 

2.8.3.5 Transformation factors for simply supported beam 

Nyström (2006) derives transformation factors for load and mass for a simply 
supported beam with point load and distributed load; see case 1 and 2 in Table 2.2. 
Two additional load situations have been considered in this work; see case 3 and 4 in 
Table 2.2. These are of interest since they are two likely load situations for fragmental 
loading that may occur when a bomb detonates and the fragments are released. 
Derivation of the transformation factors for the two latter cases can be found in 
Appendix J. 

The tabled values enable a possibility for simplified hand calculations when having an 
elastic or ideally plastic material response. For a bilinear elasto-plastic material 
response however, it is not possible to directly use the elastic transformation factor for 
the elastic part and the plastic transformation factor for the plastic part since a sudden 
change of transformation factor will result in a sudden loss of energy. That is why an 
incremental transition needs to be used. Information about how this transition has 
been considered in this thesis can be found in Appendix K. 
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Table 2.2 Transformation factors for a simply supported beam. 

 Material κF κM κMF 

Case 1 

Elastic 1.0 0.486 0.486 

Plastic 1.0 1/3 1/3 

Case 2 

 

Elastic 0.640 0.504 0.787 

Plastic 0.5 1/3 2/3 

Case 3 

Elastic 0.810 0.499 0.616 

Plastic 2/3 1/3 0.5 

Case 4 

Elastic 0.475 0.512 1.077 

Plastic 1/3 1/3 1 

 

 

2.9 The central difference method 

In this project, the Central Difference Method is used as solution procedure. The 
method is a special case of the Newmark Method with certain values for the 
parameters α and δ, which are determined in order to obtain integration accuracy and 
stability. The Newmark method is a direct integration solution method where the 
equation of motion is integrated using a numerical stepwise procedure. By the term 
“direct” it is meant that no transformation of the equations into a different form is 
carried out before the numerical integration.  

The Central Difference Method is, according to Craig and Kurdila (2006), perhaps the 
most fundamental algorithm for the approximate numerical solution of second order 
differential equations in structural dynamics. They argue that it is a simple method 
which is easy to understand and deal with, and also is an accurate second order 
algorithm. And by vast experience they mean that second order algorithm is often 

L 

L 

L 

L 
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required in many engineering problems. The method is also a conditionally stable 
algorithm, provided that the time step, ∆t, is selected to be smaller than a critical time 
step ∆tcr, which depends on the eigenvalues of the iteration matrix.  

In the Newmark method the velocity and displacement at time tn+1 are assumed to be: 

56 #�@ J 56 # \ _d1 ` �g57 # \ �57 #�@c�3 (2.84) 

5#�@ J 5# \ 56 #�3 \ dd1 ` 2=g57 # \ 2=57 #�@g �3A2  
(2.85) 

When the parameters alfa, α = 0 and delta, δ = 0.5 the Central difference method is 
obtained. 

To be able to establish the expression for the Central Difference Method the equation 
of motion needs to be recalled from section 2.7.6. �57 \ �56 \ �5 J ,d3g (2.86) 

The foundation of the Central Difference Algorithm is the simple finite- difference 
expression: 

56 # J 5#�@ ` 5#�@2u  (2.87) 

The derivative at time tn is approximated by the slope of the line passing through the 
values of the function at tn-1 and tn+1. In order to maintain the consistency of the 
approximation, the value of the second derivative is calculated as the difference of the 
first-order forward and backward finite differences.  

57 # J 5#�@ ` 25# \ 5#�@uA  
(2.88) 

When the equations (2.87) and (2.88), are inserted into the equation of motion the 
following expression is obtained and evaluated at time, tn: 

� 1uA � \ 12u �� 5#�@ \ �� ` 2uA �� 5# \ � 1uA � ` 12u �� 5#�@ J ,# 
(2.89) 

In case of neglecting the damping the equation (2.89) will look like:  1uA �5#�@ \ �� ` 2uA �� 5# \ 1uA �5#�@ J ,# 
 

 

(2.90) 

For a more accurate establishment of the expressions for The Newmark Method and 
The Central Difference Method and a working scheme for the methods the reader is 
referred to Nyström (2006). 
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3 The studied case 

3.1 Orientation 

In order to increase the knowledge about how an explosion affects a structural part, a 
specific case has been studied. Choices regarding the geometry of the structure and 
the properties of the bomb follow the Swedish shelter regulations, stated by the 
Swedish Civil Contingencies Agency (MSB), the authority which controls regulations 
of civil shelters in Sweden. Other choices and assumption are based on the theory 
presented in chapter two. 

3.2 Geometry 

Räddningsverket (2006) proposes a standard case schematically shown in Figure 3.1 
with the minimal thicknesses of structural members for the ground slab, walls and the 
roof and also the considered distance between the detonation and the affected wall. In 
this project, the height where the bomb detonates is assumed to be at a height equal to 
half the wall’s height to simulate a worst case scenario. Since the wall is a member of 
the civil structure that will get hit by the blast- and fragment loads, a wall strip 
consisting of one meter in width is to be analysed. 

 

Figure 3.1 Studied case concerning explosion proposed by Räddningsverket 

(2006). 

According to Räddningsverket (2006), the wall thickness needs to be at least 350 mm, 
and in previous research, Leppänen (2009), Nyström (2008), the height of the wall is 
set to be 2.7 m and is so in this thesis as well. All the measures and data concerning 
the beam’s geometry are shown in Figure 3.2 and Figure 3.3. 

Due to the structural response obtained by dynamic loading the wall has to be 
reinforced in both the external and the internal edge of the wall, with a maximum 
spacing of 200 mm between the bars and no shortening of the reinforcement in the 
field is allowed.  

The reinforcement amount at each edge should be in the following interval: 

0,14 % < ρ < 1,1 %  (3.1) 
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where ρ is: 

G J ��t · * 
(3.2) 

As = Reinforcement area  

b = width of the wall strip  

d = effective height  

Leppänen (2009) has chosen the amount of reinforcement to be 5φ16 with a spacing 
of 200 mm. This corresponds to an area of 1005 mm2/m and ρ = 0.335 %. The cross 
section can be visualized in Figure 3.2. This amount and arrangement of 
reinforcement is also adopted in this thesis. 

    

Figure 3.2  Cross section of the analysed beam. 

In the calculations the wall strip is treated as a simply supported beam, see Figure 3.3. 
This does not correspond to the true support condition in the civil defence shelter. The 
real condition is something between simply supported and fixed, but it is a 
simplification that makes the calculations easier and is good enough for the purposes 
in this thesis.  

    

Figure 3.3  The simply supported wall strip that is analysed. 
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3.3 Material 

According to Räddningsverket (2006), civil defence shelters should be built of 
reinforced concrete with some material specific data. The material data used in this 
project is presented in Table 3.1 and Table 3.2 for the concrete and the reinforcement 
respectively. 

Table 3.1 Concrete data used in the calculations. 

Concrete data 

Class C 25/30 

fcc  25 MPa 

Ec 31 GPa 

ρ 2400 kg/m3 

 

Table 3.2 Reinforcement data used in calculations. 

Reinforcement data 

Class B 500 BT 

Fy  500 MPa 

Es 200 GPa 

 

In this report three simplified material responses are established with the real 
behaviour under consideration. These three responses are: linear elastic, ideally plastic 
and bilinear elastic-plastic.  

A simplified bilinear load-deflection curve to describe the complex behaviour of 
concrete is introduced in section 2.5.1. An expression for how to calculate the 
ultimate moment together with an expression for the load-displacement relation is 
presented in the same section 2.5.1. The load versus deflection curve for an elasto-
plastic material can be seen in Figure 3.4 and the corresponding calculations are 
performed in Appendix C.  
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Figure 3.4 Load-displacement curve for simplified bi-linear elasto-plastic material 

response. 

When having elastic response the same stiffness as for the elastic part of the elasto-
plastic material response is used. The load-displacement curve will look like 
Figure 3.5. 

 

Figure 3.5 Load-displacement curve for linear elastic material response. 

For an ideal plastic material response the maximum internal force is chosen to be the 
same as for the elasto-plastic material response. The load-deflection curve can be seen 
in Figure 3.6. 

 

Figure 3.6 Load-displacement curve for ideal plastic material response. 

 

3.4 Load 

3.4.1 Orientation 

As mentioned in section 2.2.1, the impact of an explosion on a structure can be 
divided into impact from the blast wave and from the fragments. The properties of the 
bomb will affect the magnitude and characteristic of these impacts considerably. 
Räddningsverket (2006) uses a reference bomb to define the load conditions. This 
reference bomb, together with impact from the blast and fragments, will be treated in 
the following sections. 

 

3.4.2 Reference bomb 

The bomb has a total weight of 250 kg, 125 kg out of these are TNT explosives and 
the remaining 125 kg is shell mass (fragments). As described in Figure 3.1, the bomb 
detonates 5.0 m from the wall at a height of 1.55 m. 
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3.5 Blast load 

Basic theory about the blast load was presented in section 2.2.2. An idealized blast 
wave was also presented in the same section, this blast wave is presented once again 
in Figure 3.7.  

 

Figure 3.7 Idealized blast wave. 

The blast wave, or the pressure as function of time curve, consists of a positive phase, 
followed by a negative phase. The effect of the negative phase is often neglected and 
will not be considered in this thesis.  

The shape of the curve for the positive part can, according to Ekengren et al. (2004), 
be approximated as: 

�d3g J 01 \ �� �1 ` 3 ` 3!$� � +������  
(3.3) 

P
+ is the pressure in the front of the pressure wave, ta is the arrival time, T+ is the time 

for which the pressure is positive and α is a parameter considering the shape of the 
pressure curve. The atmospheric pressure p0 is often not considered in equation (3.3) 
since the difference in pressure over boundaries for a structural part is of interest.  

For the reference case presented earlier Pr
+ is equal to 5000 kPa, T

+ is equal to 
8.974 ms, ta is equal to 2.66 ms and α is equal to 0.5983 in accordance with Leppänen 
(2009). The resulting impulse intensity for the positive part is equal to 2800 Pas.  

The impulse intensity i+ is the area under the time versus pressure curve for the time 
T

+ and can be calculated by excluding p0 from equation (3.3) and integrate the 
expression over the time T

+.  

The pressure versus time relation for the positive phase in Figure 3.7 has, in this 
thesis, been even more simplified by a triangular curve, see Figure 3.8 and equation   
(3.4). The impulse intensity, the arrival time and the peak pressure is the same as for 
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the equation used by Leppänen. Furthermore, the peak pressure P+ will occur after 0,1 
ms since a too large increment of the load can result in numerical problems in the FE 
analysis. 

 

Figure 3.8 Simplified pressure versus time relation used in calculations made in 

this report. �d3g J 0 when 0 S 3 n d3! ` 0.1 · $�g  

�d3g J ��0.1 · $� d3 ` d3! ` 0.1$�gg when d3! ` 0.1 · $�g S 3 n 3! 

  (3.4) 

 �d3g J �� ` ��0.9 · $� d3 ` 3!g when 3! S 3 n d3! \ $�g 

�d3g J 0 when d3! \ $�g S 3 n ∞  

The time T
+ for the simplified curve can be calculated from the condition that the 

impulse should remain the same: 

$� J 2 · -��� J 2 · 28005000 · 10O 1.12 ms 
(3.5) 

 

3.6 Fragment loads 

Basic theory about fragments and the fragmentation process was presented in section 
2.2.3.1. It is assumed, in this thesis, that the bomb detonates with its nose downwards 
and its tail upwards which implies that the beam (wall strip) will be exposed to a 
swarm of relatively small fragments. 
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As mentioned in section 2.2.3.5, 60 percent of the case mass will strike in a segment 
of 40 degrees. From Figure 3.9.a. and equation (3.6) it can be concluded that the total 
height of the wall will be within these 40 degrees for the studied reference case.  

The percentage of the total case mass hitting a wall strip of 1,0 m in width can now be 
calculated by also consider Figure 3.9.b. and equations (3.6) and (3.7). 

 

 

Figure 3.9 Fragmental distribution from (a), side and from (b), above 

= J tan�@ � u2�� J  �u J 2.7 m, � J 5 m� J 15,11° 
(3.6) 

> J tan�@ � �2�� J  �� J 1 m� J 5,71° (3.7) 

The total amount of fragments striking 1 meter of the wall then becomes: 

�� · �2 · =40° � · 0.6 · �2 · >360°� J 0.0144 · �� J 0.0144 · 125 kg J 1.8 kg 
(3.8) 

The total mass hitting the wall strip will thus be 1.8 kg which, for a wall of height 
2.7 m, is equal to 0.67 kg/m2. 

Ground level 
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An empirical equation for how to calculate the mass distribution of the fragments for 
a certain bomb was presented in section 2.2.3.7. The same expression is once again 
presented: 

/d�kg J ��2 · �� +�l�k m  (3.9) 

The fragment distribution, MA, factor depends on the shape and the properties of the 
bomb. This parameter is not defined for the reference bomb. However, a similar bomb 
(American GP-bomb Mk82) can be used to estimate the value of MA and 
Nyström (2008) estimates this parameter to be 1.758 g. 

The total amount of fragments is obtained by putting .� to zero in equation (3.9) and 
is equal to 35 552 fragments. The number of fragments, larger than a certain mass can 
be seen in Figure 3.10. 

 

Figure 3.10 Number of fragments larger than a certain mass. 

According to equation (3.8) only 1.44 % of these fragments will strike the wall which 
gives a total number of 526 fragments. 

The mass distribution for the fragments can be obtained by dividing the total amount 
of fragments into 0.1 g intervals: . J �0, 0.1, 0.2, 0.3, … , 100�   �¢�  
The average mass in each interval is calculated according to equation (3.10). 

.!£f J .� \ .��@2  
(3.10) 

Equation (3.10) is a simplification of the real distribution but it is assumed to be a 
good enough approximation since the mass intervals are relatively small. 

The amount of fragments in each interval is calculated according to equation (3.11). /�#�f J d/d�fg ` /d�f¤zgg · 0.0144 (3.11) 

The total mass in each interval can now be calculated as: 

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

0 20 40 60 80 100

N
u

m
b

e
r 

o
f 

fr
a

g
m

e
n

ts

Mass of fragment [g]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
46

.���f J .!£f · /�#�f (3.12) 

which gives a mass distribution according to Figure 3.11. 

 

Figure 3.11 Fragment mass distribution for the studied case. 

Striking velocities for the average mass in each interval can be calculated by 
equation (2.3) and the impulse for each interval can now be expressed as: �� J  8� · .���f (3.13) 

This gives an impulse distribution according to Figure 3.12. 

 

Figure 3.12 Impulse distribution from fragments for the studied case. 
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3.6.1 Fragmental impact on the beam 

The fragmental impact on the beam can be seen as impulse loading since the 
fragments hits the beam at very high velocities and will be decelerated by the beam 
during a very short time.  

As mentioned in section 2.2.3.2 the fragments will also penetrate the beam. 
Penetration depths as function of the fragment mass when the bomb detonates at a 
distance of 5 meters are presented in Figure 3.13 below. These penetration depths are, 
compared to more advanced simulations in Nyström (2008), rather high but 
nevertheless show a principal relation between penetration depth and fragment mass.  

 

Figure 3.13 Penetration depth as function of fragment mass at a distance R=5m. 

The duration from when the fragment strikes the wall until it has been fully stopped 
by the wall can be calculated by considering the penetration depth and the average 
velocity during the penetration, assuming linear retardation, as: 

$
 J 98!£f J 2 · 98�  
(3.14) 

where 9 is the penetration depth which depends on the velocity, mass and shape of the 
fragment. 

Leppänen (2009) estimates this time for a 6 gram fragment to be 0.1 ms. This value 
will also be used as an approximation for the fragment load duration for all fragments, 
independently of mass in this thesis. 

The time from when the bomb detonates until the fragment reach the surface of the 
beam can be calculated by assuming linear retardation of the fragment in the air as: 
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3!f J �8!£f     (3.15) 

8!£��!:� J 81 \ 8�2  
(3.16) 

By assuming a force-time relation according to Figure 3.14 the peak force for a 
fragment can be calculated as: 


��!& J 2 · ��3 J 2 · .� · 8�3  

 
 

(3.17) 

Figure 3.14 Load versus time relation for fragments. 

 

3.6.2 Combination of fragment and blast load 

Figure 3.15 shows the arrival time for the blast wave and for a 50 gram fragment as 
function of the distance to the centre of the detonation. It can be observed that at a 
distance of five meters the fragment and the blast wave will hit the wall at 
approximately the same time, according to Nyström (2008) which is a worst case 
scenario. Since the mass of the fragments are not constant the arrival time for a single 
fragment might deviate a little from Figure 3.14. It can however be assumed that the 
total amount of fragments will hit the wall within a relatively short time period.  
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Figure 3.15 Time when the fragment and the blast wave reaches the beam as 

function of the distance to the bomb, Leppänen (2009).  

The fragmental impact will later on be simulated as several point loads and as one 
(simplified) uniformly distributed load. When the fragments are simulated as point 
loads the real arrival time and load amplitude will be calculated for each point load, 
i.e. for each fragment. However, the duration for the load will still be kept to 0.1 ms. 
When the fragments on the other hand are simulated as one distributed load the arrival 
time has to be chosen. A conservative assumption is to say that the peak value from 
the blast load and the distributed fragment load will occur at the same time. This is 
also a scenario relatively close to reality and will be used in this work.  

Figure 3.16 and Figure 3.17 show the pressure versus time relation for the blast load 
and for the fragment load respectively and Figure 3.18 shows the total load versus 
time relation. 

 

Figure 3.16 Load versus time relation for blast load. 
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Figure 3.17 Pressure versus time relation for fragment load when applied as 

simplified uniformly. 

 

Figure 3.18 Total load versus time relation for blast- and fragment load. 

In order to use the same time functions throughout all simulations, a gap of 0.12 ms 
between zero to the time when the blast load starts has been left since a large fragment 
could hit before the blast load arrives when all fragment are simulated as separate 
point loads. 

 

3.6.3 Simulation of fragments 

The simulation of fragments is usually simplified in calculations by distributing the 
total impulse from the fragments as a uniform pressure over the beam. Another 
possible simplification, very conservative and extreme, is to simulate the total impulse 
of the fragments as one point load acting in the middle of the beam, which would lead 
to a maximum displacement in mid span. The most realistic simulation, though, would 
be to use a random generator and let fragments with different size and velocity strike 
the wall in different points. In order to see how simulations of the fragments affect the 
response of the beam, different simulations has to be run in between the two extreme 
cases.  

According to Räddningsverket (2006), shelters do not need to be designed for 
fragments with a mass larger than 50 gram. Therefore, fragments with mass larger 
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than 50 gram will not be considered in the study carried out here
impulse generated by these larger fragments will be taken into consideration.

The choice of how to simulate the fragments in between the two extreme cases can be 
made in many different ways. However, the main goal in this project has been to 
imitate the reality as good as possible but still be able to see how a proper simulation, 
close to reality, may differ from a more theoretical one. By considering the amount of 
fragments in different mass intervals and also consider the total impulse in each 
interval a good base for how to simulate the fragments is achieved.

By use of equation (3.9) the amount of fragments with mass up to 50 grams can be 
calculated and is equal to 
be to use a random generator based on the mass distribution but in such a case the 
impulse intensity will not be the same for different runs. Hence, if the impulse shall be 
constant, which is the objective here, the masses of the fragments has to be chosen in 
advance. In this report, eight different groups of fragments have been chosen in the 
interval from zero to fifty grams, see 

Figure 3.19 Subdivision of fragments into eight groups. The total mass of fragments 

larger than 50 g has been transformed to fragments with less mass.

Each group contains a certain amount of fragments wi
amount of fragments will furthermore be different for all the groups. As a first 
simulation, all of the fragments from the same group will be thrown out in one, 
randomly chosen, point on the beam. In the second run, each grou
into two equally sized sub groups and each sub group will be thrown out in two 
randomized points. This simulation will continue until each subgroup contains only 
one fragment, see Figure 3
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than 50 gram will not be considered in the study carried out here.
impulse generated by these larger fragments will be taken into consideration.

The choice of how to simulate the fragments in between the two extreme cases can be 
in many different ways. However, the main goal in this project has been to 

imitate the reality as good as possible but still be able to see how a proper simulation, 
close to reality, may differ from a more theoretical one. By considering the amount of 

ments in different mass intervals and also consider the total impulse in each 
interval a good base for how to simulate the fragments is achieved. 

the amount of fragments with mass up to 50 grams can be 
culated and is equal to 511 pieces. A good way to simulate these fragments would 

be to use a random generator based on the mass distribution but in such a case the 
impulse intensity will not be the same for different runs. Hence, if the impulse shall be 

nstant, which is the objective here, the masses of the fragments has to be chosen in 
advance. In this report, eight different groups of fragments have been chosen in the 
interval from zero to fifty grams, see Figure 3.19. 

Subdivision of fragments into eight groups. The total mass of fragments 

larger than 50 g has been transformed to fragments with less mass.

Each group contains a certain amount of fragments with the same mass. The mass and 
amount of fragments will furthermore be different for all the groups. As a first 
simulation, all of the fragments from the same group will be thrown out in one, 
randomly chosen, point on the beam. In the second run, each group will be divided 
into two equally sized sub groups and each sub group will be thrown out in two 
randomized points. This simulation will continue until each subgroup contains only 

3.20. 

20 30 40 50 60 70 80

Mass of fragments [g]1 2 3   4     5        6         7         8          

51 

. However, the 
impulse generated by these larger fragments will be taken into consideration. 

The choice of how to simulate the fragments in between the two extreme cases can be 
in many different ways. However, the main goal in this project has been to 

imitate the reality as good as possible but still be able to see how a proper simulation, 
close to reality, may differ from a more theoretical one. By considering the amount of 

ments in different mass intervals and also consider the total impulse in each 

the amount of fragments with mass up to 50 grams can be 
A good way to simulate these fragments would 

be to use a random generator based on the mass distribution but in such a case the 
impulse intensity will not be the same for different runs. Hence, if the impulse shall be 

nstant, which is the objective here, the masses of the fragments has to be chosen in 
advance. In this report, eight different groups of fragments have been chosen in the 

 

Subdivision of fragments into eight groups. The total mass of fragments 

larger than 50 g has been transformed to fragments with less mass. 

th the same mass. The mass and 
amount of fragments will furthermore be different for all the groups. As a first 
simulation, all of the fragments from the same group will be thrown out in one, 
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randomized points. This simulation will continue until each subgroup contains only 
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Figure 3.20 Simulation of fragments in the three first runs, containing 8, 16 and 32 

groups of fragments. 

Since groups and subgroups will be divided into 2, the amount of fragments in each 
group has chosen to be multiples of 2. The number of fragment per group in Table 3.3 
gives a similar distribution to reality.  

Table 3.3 Mass intervals for the subdivided groups comparing the columns 2 and 

3 which is the true subdivision and in 5 and 6 the division used in this 

project. 

Reality Chosen division in this work 

Mass interval  
[g] 

Fragments % of total Group Fragments % of total 

 0 – 0.9 261 51.1% 1 256 50.2% 

0.9 – 3.4 125 24.5% 2 128 25.1% 

3.4 – 7.6 63 12.3% 3 64 12.5% 

7.6 – 13.4 32 6.0% 4 32 6.3% 

13.4 – 20.8 16 3.1% 5 16 3.1% 

20.8 – 29.6 8 1.6% 6 8 1.6% 

29.6 – 39.4 4 0.8% 7 4 0.8% 

39.4 - 50 2 0.4% 8 2 0.4% 

Total amount 511 
 

Total 
amount 

510 
 

 

Run 1 

Run 2 

Run 3 
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The size of fragments in each group can be calculated by respecting the condition that 
the real impulse should remain the same between the mass interval and the 
corresponding group. Even if masses over 50 g not will be taken into consideration, 
the impulse of these fragments will. The impulse for these larger fragments will be 
added to the mass interval as function of how large impulse each group contains in 
relation to the total impulse up to 50 g. The total impulse and corresponding choice of 
mass for the groups can be seen in Table 3.4 and Table 3.5. The choice of mass for the 
fragments in Table 3.5 has been made by respecting the condition that the impulse for 
the different groups should be the same as for the corresponding mass intervals. 

Table 3.4 The impulse for the various intervals including the extra impulse 

obtained from the fragments larger than 50 g. 

Mass interval [g] Impulse 
[Ns] 

% of impulse 
from 0-50 g 

Impulse for fragments 
larger than 50 g [Ns] 

Total 
impulse 

0 – 0,9 101,3 3,4% 9,5 110,8 

0,9 – 3,4 398,9 13,3% 37,4 436,3 

3,4 – 7,6 590,4 19,7% 55,4 645,8 

7,6 – 13,4 592,2 19,8% 55,6 647,8 

13,4 – 20,8 500,4 16,7% 47 547,4 

20,8 – 29,6 375,2 12,6% 35,2 410,5 

29,6 – 39,4 258,8 18,7% 24,3 283,1 

39,4 - 50 173,6 5,8% 16,3 189,9 

Total impulse 0–50 g 2991  281 3272 

Impulse for fragments 
larger than 50 g 

280,8 

 

 

 

 

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
54

Table 3.5 The chosen mass for the various runs with corresponding velocity and 

impulse. 

Group Fragments Mass [g] Velocity [m/s] Impulse [Ns] 

1 256 0,3 1473 110,8 

2 128 2,0 1730 436,3 

3 64 5,5 1824 645,8 

4 32 10,8 1872 647,8 

5 16 18,0 1902 547,4 

6 8 26,7 1923 410,5 

7 4 36,5 1937 283,1 

8 2 48,7 1950 189,9 

                                                    Total impulse 3272 

 

A total number of 9 different runs are prepared, see Table 3.6. In each run, the same 
number of striking points as loads will be chosen. These points will be equally 
distributed over the length of the beam. Furthermore, each load will be assigned to 
one single, randomly chosen, point. 

Each run will be performed five times in order to see how the distribution affects the 
deflection of the loaded beam. 

Table 3.6 Number of fragments and loads in the different runs. The subgroups in 

the grey marked zone consist of one fragment and can therefore not be 

further subdivided. 
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Group 1 1 256 2 128 4 64 8 32 16 16 32 8 64 4 128 2 256 1

Group 2 1 128 2 64 4 32 8 16 16 8 32 4 64 2 128 1 128 1

Group 3 1 64 2 32 4 16 8 8 16 4 32 2 64 1 64 1 64 1

Group 4 1 32 2 16 4 8 8 4 16 2 32 1 32 1 32 1 32 1

Group 5 1 16 2 8 4 4 8 2 16 1 16 1 16 1 16 1 16 1

Group 6 1 8 2 4 4 2 8 1 8 1 8 1 8 1 8 1 8 1

Group 7 1 4 2 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1

Group 8 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

number of loads 8 16 30 54 94 158 254 382 510  
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The impulse distributions for run 1 and run 5 are presented in figure 3.21 and 3.22 
respectively. The loads ha
which will be used as a “worst case scenario”.

  

Figure 3.21 Impulse distribution for the various cases in run 1.
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s for run 1 and run 5 are presented in figure 3.21 and 3.22 
respectively. The loads have been randomly distributed for all runs except for run 1A 
which will be used as a “worst case scenario”. 

 

 

 

Impulse distribution for the various cases in run 1. 

8 7 6 

55 

s for run 1 and run 5 are presented in figure 3.21 and 3.22 
for all runs except for run 1A 
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Figure 3.22 Impulse distribution for the various cases in run 5.

 

 

3.6.4 Fragmental load angle

As a first step, all fragmen
regardless of where on the beam a fragment strikes. This is, in reality, only true for 
fragments that strike in the middle of the beam. This assumption will therefore 
somewhat overestimate the forces acting closer to the support and totally ignore the 
horizontal resultant of the force. 
with the 8 fragment groups represented as forces which all acts perfectly 
perpendicular to the beam. 
load angel has been taken into consideration. 
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Impulse distribution for the various cases in run 5. 

Fragmental load angle 

As a first step, all fragments will be assumed to strike the beam at an angle of 90
where on the beam a fragment strikes. This is, in reality, only true for 

fragments that strike in the middle of the beam. This assumption will therefore 
somewhat overestimate the forces acting closer to the support and totally ignore the 

rizontal resultant of the force. Figure 3.23a presents one of the load cases in run 1 
with the 8 fragment groups represented as forces which all acts perfectly 
perpendicular to the beam. Figure 3.23b presents the same load case but where the 
load angel has been taken into consideration.  
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Figure 3.23 Fragment load where load angle has, and has not been taken into 

consideration, (a) and (b) respectively.  

If the load angel is taken into consideration, each load can be subdivided into two 
resultants according to Figure 3.24. 

 

 

Figure 3.24 Fragment load subdivided into two resultants with a certain load angle. 

 

3.6.5 Fragment arrival time 

The time from when the bomb detonates until a fragment reaches the wall has been 
simplified by assuming that the distance from the center of the bomb to the striking 
points, R, is equal to five meters. This is, as for the load angle, only true for fragments 
hitting the mid section of the beam as can be seen in Figure 3.25.  

(a) 

(b) 

α 

F FV = F·sinα 

FH = F·cosα 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
58

 

Figure 3.25 Distance from the bomb to any point on the beam. 

Since the distance will be underestimated for fragments closer to the supports, the 
time from when the bomb detonates until a fragment reaches this point will also be 
underestimated. Fragments hitting closer to the supports will also have somewhat 
lower velocity when they arrive, since the distance is longer, which results in less 
impact for these fragments. 

 

3.6.6 Comments about load angle and arrival time 

A simplified model where the fragment load angle is constantly equal to 90○ and 
where the fragment arrival time is independent of where the fragment hit the beam 
(i.e. based on R = 5 m) will be used as a standard case in the simulations. The 
difference in load angle and arrival time will however be considered in order to see 
deviations compared to the simplified assumptions.  

β 

R / sin β R 
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4 The FE-model 

4.1 General description 

The concrete wall strip is analysed numerically by using the finite element program 
ADINA (2008). Two different models are created, one simplified beam element 
model and a 2-D solid element model. Both these models are analysed with elastic, 
plastic and elastic-plastic material properties as described in section 3.3. For both 
models, an equivalent elasto-plastic material is used with the same simplified load-
displacement curve as for the real material, Figure 3.4. The beam can in this way be 
modelled by only one material instead of two; one for concrete and one for 
reinforcement. By using an equivalent material, the FE-models will also be much 
more stable, since the simulation of cracking is not considered.  

The beam element model is used to investigate how the beam’s behaviour differs 
when the fragmental load is either applied as various numbers of point loads or as a 
uniformly distributed. The 2-D solid element model, though, is mainly used to 
simulate removal of concrete due to the fragmental impact when penetrating the 
concrete. 

The beam is exposed to a blast load which is acting as a uniformly distributed load, 
while the fragment loads are either applied as a uniformly distributed load or as 
randomly distributed point loads corresponding to run 1,5 and 9. The fragment loads 
can vary between uniformly distributed load and point loads because the beam’s 
difference in behaviour is to be checked.  

In ADINA the loads are applied by using time functions to make the simulation more 
realistic. In the first case, the blast- and fragment loads are applied as uniformly 
distributed loads in such a way that they hit the beam at the same time. In the other 
case, the fragment loads are applied with varying arrival times, depending on the 
fragment mass and velocity. 

Plastic material response is modelled in the same way as elastic-plastic response but 
the stiffness for the elastic part is increased by using rotational constraints for the 
elastic elements. The support nodes are used as master nodes and the elastic nodes in 
between the supports and the plastic element are used as slave nodes in order to 
constrain the beam’s deflection to imitate that assumed according to yield theory. 

To use the linear elastic, plastic and elastic-plastic material responses, a fictive 
young’s modulus and fictive yield strength needs to be calculated. The fictive 
Young’s modulus is calculated with the equations (4-1) and (4-2), this is achieved by 
reducing the Young’s modulus with a constant γ, which is the quotient of the moment 
of inertias from state I and state II to get a representative value for the two states, see 
Figure 2.21. This will be input data for the FE-models in the elastic as well as the 
elastic-plastic analysis.  

γ J ����� (4-1) 

��.�� J ��.@γ  
(4-2) 
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γ Reduction factor for the Young’s modulus 

II Moment of inertia in state 1 

III Moment of inertia in state 2 

Ec.1 Young’s modulus for concrete in state 1  

Ec.II Fictive Young’s modulus  

The ultimate capacity of the beam is calculated in Appendix B according to the theory 
presented in chapter two. The fictive yield strength can now be calculated according 
to equation (4-3). 

Mu Ultimate moment capacity 

,�� Fictive yield stress used to describe when the beam goes from linear 
elastic to ideally plastic response  

Z Flexural resistance 

4.2 Beam element model 

4.2.1 Material properties 

A beam element model is used to model the beam in a simplified way. The beam 
element is a two node element, which in ADINA may be provided with a maximum 
of seven integration points over the height. This means, that the cross-section can not 
be fully plasticized, but at most acquire a stress state as that shown in Figure 4.1. 
Therefore the flexural resistance will be modified on the basis of the seven integration 
points and be used in the input file for FE-analysis.  

 

Figure 4.1 Maximum stress state over cross section with seven integration points 

in ADINA. 

,�� J �B'  
(4-3) 
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The flexural resistance has been calculated by using equation (2-11) and the following 
expression is obtained: 

Z� J 1354 b · hA 
(4-4) 

The flexural resistance obtained by equation (2-11) differs approximately 4 % 
compared to the flexural resistance when the cross-section can reach its full plastic 
capacity, i.e. Z=bh2/4. 

During the analysis, the models were deformation controlled by point loads at the 
plastic nodes. It turned out that the expected internal resisting force when the beam 
reached yielding was not obtained. The reason for this is unknown but in order to 
describe a correct moment capacity of the beam the yield strength is increase with 
another 4 %, i.e.  ,�� J 1.04 · ,� (4-5) 

where  

,� J �©�Z�  
(4-6) 

In Table 4.1 the modified input data, concerning the material properties for the elastic 
and plastic elements are presented. The values for the Young’s modulus and the yield 
stress are calculated and described in Appendix B. 

Table 4.1 Modified input data for the beam elements for the elastic elasto-plastic 

response. 

Elements Young’s modulus [GPa] Yield stress [MPa] 

Elastic 3.86 - 

Plastic 3.86 (constraints) 5.358 

Elasto-Plastic 3.86 5.358 

 

Since the runs have different numbers of point loads, the subdivision of elements will 
be different for all the runs, since the points where the fragment loads hit must agree 
with the nodes in the mesh. 

 

4.2.2 Elastic analysis 

In Table 4.2, the number of elements is presented for run 1, 5 and 9 for the elastic 
analysis.  

Table 4.2 Number of elastic beam elements in runs 1, 5 and 9. 
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Run Number of elements 

Run 1 48 

Run 5 188 

Run 9 510 

The beam elements model can be seen in Figure 4.3 and is only consisting of linear 
elastic elements. 

 

Figure 4.2 Beam element model for the linear elastic material response. 

 

4.2.3 Elasto-plastic analysis 

The plastic hinge phenomenon, discussed in section 2.4.2 is modeled with one elasto-
plastic element in the midsection and the rest of the beam with linear elastic elements. 
The elasto-plastic element is approximately ten times smaller than the elastic 
elements. The numbers of elastic- and elasto-plastic elements are presented for run 1, 
5 and 9 in Table 4.3. 

Table 4.3 Number of elastic- and plastic beam elements in runs 1, 5 and 9. 

Run Number of elastic elements Number of plastic elements 

Run 1 32 1 

Run 5 188 1 

Run 9 510 1 

In Figure 4.3 the concept of the beam model is visualized with the elastic and elasto-
plastic parts.  

Elastic elements 
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Elastic elements 

 

Figure 4.3 Beam element for the beam element model in the elasto-plastic analysis. 

 

4.3 2D-solid element model 

4.3.1 Element mesh and material properties 

A 2D-solid, plane stress model is used to be able to analyze the wall strip in a more 
advanced way. The main aim with this model is to simulate the removal of concrete 
after the fragmental impact has destroyed parts of the concrete surface. 

To avoid stress concentrations in the support area, two support blocks are used to 
distribute the stresses and the support conditions are applied to the lower face of them, 
see Figure 4.4. These blocks are modelled with steel material properties. 

 

Figure 4.4 2-D solid model with support blocks to avoid stress concentrations. 

In the 2-D solid model, four node elements are used, this means that the flexural 
resistance depends on the number of elements, since the number of elements affects 
the total number of integration points over the cross sections height. But it turned out 
that, for 8 elements or more over the height, the cross section can be assumed to reach 
its fully plastic capacity.  

Elasto-plastic element 

 q 

 Support blocks 
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The input data concerning material properties for the elastic as well as the elasto-
plastic analysis is presented in Table 4.4. 

Table 4.4 Input data for the 2-D solid elements for the elastic and elasto-plastic 

response. 

Elements Young’s modulus [GPa] Yield strength [MPa] 

Elastic 3.86 - 

Elasto-Plastic 3.86 4.95 

 

4.3.2 Elastic analysis 

In the elastic analysis the mesh is equally sized throughout the beam and the number 
of elements can be seen in Table 4.5. In Figure 4.5 the 2-D solid model can be seen 
with the exception of the plastic part. 

Table 4.5 Number of elastic 2-D solid elements. 

Number of elastic elements Number of plastic elements 

441 none 

 

4.3.3 Elasto-plastic analysis 

In the elasto-plastic analysis the mesh is divided into two elastic parts and one elasto-
plastic part placed in the middle of the beam, see Figure 4.5. This is done to achieve 
the plastic hinge phenomenon as discussed in section 2.4.2. The number of elements 
can be seen in Table 4.6. 

Table 4.6 Number of elastic- and plastic 2-D solid elements in the elasto-plastic 

analysis. 

Number of elastic elements Number of plastic elements 

434 7 

 

In Figure 4.5, the 2-D solid model can be seen with the division of the elastic and 
elasto-plastic parts and as can be seen the elastic- and elasto-plastic elements are 
equally sized. 
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Elastic elements 
 

Figure 4.5 Element mesh for the 2-D solid model in the plastic analysis with the 

elastic- and elasto-plastic parts marked out. 

 

4.4 Simulation of removal of concrete due to fragmental 

impact 

In this section, a simulation of removal of concrete due to the fragmental impact is 
presented. To be able to calculate the penetrations depth for the fragmental impact, 
equations are taken from section 2.2.3.2. 

When fragments hit the wall strip, penetration will occur and concrete material will be 
partly destroyed. This phenomenon causes serious local damage to a certain depth in 
the concrete depending on the fragments mass and velocity. The material in regions 
close to the holes and in between the holes can no longer contribute to the stiffness. 
This loss of stiffness is to be modelled, and to achieve this behaviour in ADINA, 
elements on the outer edge of the wall strip will be removed. 

The 2-D solid element model is used to model this behaviour, since these elements 
enable the removal of the outer edge elements with the remaining elements still 
contributing to the stiffness. Both the blast- and fragment load are applied and both 
loads are only applied as uniformly distributed loads.  

In this project, three methods for simulating the removal of material when the 
fragments hit the wall strip have been analysed. A value for all the fragments has been 
calculated and a value of about 50 mm is obtained. The different methods for 
analyzing the removal are presented below: 

 

1. The cross-section is initially reduced which means that the beam’s moment 
capacity and internal resisting force decreases, also the yield strength needs to 
be changed to a somewhat higher value, see calculations in Appendix D. 
Hence, the beam is analysed with a height of 300 mm instead of the original 
350 mm, i.e. an initial removal of 50 mm of concrete, see Figure 4.6. 
 

2. The cross-section is reduced by removing the concrete layer that gets directly 
hit by the fragment load at a certain time. This means that the beam’s stiffness 

Plastic elements 
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will decrease substantially and the loss of mass will also influence the 
behaviour of the beam. The removal consists of 50 mm concrete at a time 
during loading, when the fragmental load duration is over, tremove = 0.22 ms, 
See Figure 4.7. 
 

3. The cross-section is reduced by removing stiffness material in the top layer, 
while the remaining part will consist of a mass material with a significantly 
lower Young’s modulus to simulate destroyed concrete. This means that the 
top layer’s stiffness will disappear while the mass will decrease depending on 
how much of the mass that is to be removed. The layer that is to be removed is 
modelled with two different materials. The concrete which is called the 
stiffness material has its original material properties except the weight, will be 
removed at the time when the fragmental load duration is over, i.e. tremove = 
0.22 ms and another material here called mass material with a low Young’s 
modulus will remain. This enables to avoid reduce all the mass of the 50 mm 
layer. A removal of 0, 25, 50 and 100 % of the mass is to be analysed. The 
amount of removed material for the various cases can be seen in Table 4.8. In 
Figure 4.8, a schematic description explains how the removal of stiffness and 
mass takes place. 

 

Figure 4.6 Initially reduced cross section with a height of 300 mm. 

 

Figure 4.7 Cross section when removing all mass and stiffness of the top layer. 

All the cross sections that is analysed when simulating the removal of concrete due to 
the fragmental impact, have the same cross section and material properties as the 
beam with a height of 300 mm. These properties can be seen in Table 4.7. 

Table 4.7 Material data concerning yield stress and Young’ modulus for the 

analysed beam with a height of 300 mm. 

fy 5.36 MPa 

E 4.15 GPa 

For the beam, which is modelled with two materials in the top layer, the cross section 
with the different layers is clarified in Figure 4.8. The material and cross section data 

50 

300 

300 
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for the different layers are presented in Table 4.9. The stiffness material is modelled 
with bilinear elasto-plastic material properties in the midsection and the rest with 
linear elastic material properties, while the mass material is modelled with linear 
elastic material properties throughout the entire length.  

 

Figure 4.8 Cross section when the top layer consisting of a stiffness material and a 

mass material and the stiffness material layer will be removed to 
simulate the fragmental impact. 

 

Table 4.8 Masses in the top layer that is to be removed and the remaining masses 

for the different cases. 

Removal of mass 

[%] 

Removed material 

Mass [kg] Modified density [kg/m
3
] 

0 0 2400 

25 81 1800 

50 162 1200 

100 324 0 

 

Table 4.9 Material properties for the two materials which are modelled in the top 

layer. 

Material Young’s modulus Yield stress (elasto-plastic element) 

Stiffness material 4.15 GPa 5.36 MPa 

Mass material 0.4 MPa - 

 

 

 

 300 

 50 
Stiffness material 

Mass material 

+ 
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5 Results 

5.1 Orientation 

In this chapter the results from the different analysis are presented and discussed. The 
results obtained using ADINA have been compared and verified with the SDOF 
results and with simplified hand calculations which also are presented in this chapter.  

In all the results presented in this section, the blast load is applied as a uniformly 
distributed load and the fragment load is either applied as various numbers of point 
loads or as a uniformly distributed load and the difference in behaviour is to be 
checked. All figures concerning displacement as a function of time are treating the 
midpoint displacement. 

The results from linear elastic and ideally plastic analysis are mainly used to verify 
the model and to get a better understanding for the structural behaviour. Focus will be 
on the results obtained when using bilinear elasto-plastic material response which is 
the response closest to reality. 

 

5.2 Linear elastic analysis 

5.2.1 Beam element model 

As a first step to verify the beam element model, the displacement is compared to the 
ones obtained by SDOF and hand calculation. In Figure 5.1, the comparison between 
the beam element model, SDOF and hand calculation is presented. As can be seen the 
results between the different analysis methods is agreeing very well. 
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Figure 5.1 Comparison of midpoint displacements for the beam model in ADINA, 

SDOF and hand calculation. Blast- and fragment load is applied as a 

uniformly distributed load. 

In linear elastic analysis, it is possible to super position different loads and get an 
identical result as if the loads where applied together at the same time. This can be 
explained by the following expression which calculates the elastic displacement: 

5�� J  �@��� \ �A��� J �@ \ �A���  
(5.1) 

where  

��� J  iD F.�� · i� · ��� (5.2) 

In Figure 5.2 this is presented for the blast- and fragment load and by adding the 
contribution from the single responses, the total response is obtained. 

 

Figure 5.2 Midpoint displacements for the single response of the blast- and 

fragment load and the blast- and fragment load acting together for the 

FE beam element model. 

A comparison in displacement between when the fragment load is applied normally 
and when the true arrival time, true distance and the inclination of the fragment loads 
are considered has been performed. The blast load is in both cases applied as a 
uniformly distributed load. In Figure 5.3, run 1B is presented for the two cases, and as 
can be seen, the difference is negligible. The small difference can be explained by the 
fact that the force inclination is small and therefore the reduced force perpendicular to 
the beam strip is almost the same as the original one. The fragment loads are also less 
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influencing regarding the displacement compared to the blast wave. In further 
analysis, the true arrival time, distance and inclined force will not be considered. 

 

Figure 5.3 Comparison in displacement for run 1 B when the load is applied 

normally and when the true arrival time, force and inclination are taken 

into consideration. 

In Figure 5.4 the results from the linear elastic analysis are presented for run 1. As can 
be seen, the difference in displacement between the various runs and when the 
fragment load is applied as a uniformly distributed load is small. Run 1 A is a worst 
case scenario, see section 3.6.3, where the largest fragments are applied in the middle 
of the beam with decreasing size towards the supports and that is why this 
displacement curve differs somewhat from the other ones. 

Since the difference in displacement between the various runs and the uniformly 
distributed is so small, a zoomed version of the original results is needed to be able to 
distinguish the various curves. The zoomed version is presented in Figure 5.5 and as 
the figure shows once again, the difference in displacement is rather small. 
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Figure 5.4 Displacement for the linear elastic analysis Run 1 and when the 

fragments are applied as uniformly distributed. 

 

Figure 5.5 Zoomed displacements for the linear elastic analysis, Run 1 and when 

the fragments are applied as uniformly distributed. 
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In Figure 5.6 the displacements for Run 5 are presented and it should be noticed that 
the difference among the curves are now much smaller compared to Run 1. It depends 
on that it is many smaller point loads applied compared to Run 1 and therefore it 
looks more or less like the uniformly distributed case. 

 

Figure 5.6 Displacements for Run 5 and when the fragment loads are applied as 

uniformly distributed.  

In the zoomed version of Figure 5.6, Figure 5.7, the displacements are presented once 
again. The magnitude differences in displacement are approximately 1 mm for Run 5 
compared to run 1 where it is approximately 2 mm. Run 5 D has significantly larger 
displacement than the other cases which can be described by the subdivision, since the 
largest fragment group cannot be further divided than into one single fragment. And if 
these large fragments strike in the middle of the beam the displacement will be 
somewhat larger. 
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Figure 5.7 Zoomed displacements for Run 5 and when the fragment loads are 

applied as uniformly distributed.  

The displacements for Run 9 are presented in Figure 5.8 and it reminds much of the 
results obtained in run 5. Still there is some difference between the cases which can be 
described by the subdivision once again. However, all cases are though very close to 
the uniformly distributed curve, which can be more easily seen in Figure 5.9. 
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Figure 5.8 Midpoint displacements for Run 9 and when the fragment loads are 

applied as uniformly distributed.  

 

Figure 5.9 Zoomed midpoint displacements for Run 9 and when the fragment loads 

are applied as uniformly distributed.  
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5.2.1.1 Solid element model 

In this chapter, the results from the 2-D solid model with linear elastic material 
properties are presented. Since the 2-D solid model mainly is used for simulating the 
removal of concrete, it will only be presented with the fragment loads applied as a 
uniformly distributed load. The displacements are compared to the ones obtained by 
the beam element model in order to verify the model. 

In Figure 5.10, the displacements for the 2-D solid model and beam element model 
are presented and as can be seen, the curves are similar, but differ marginally 
concerning displacement and period.  

 

Figure 5.10 Midpoint displacements for the 2-D solid- and the beam element model 

when the fragment loads are applied as uniformly distributed.  

 

5.2.2 Conclusion 

The different analyses methods that have been used: beam element model, 2-D solid 
model, SDOF and hand calculation have all generated agreeing results in the linear 
elastic analysis. 

For all the runs and cases that have been performed in the linear elastic analysis it 
seems to be a good estimation to apply the fragmental point loads as a uniformly 
distributed load. For each further subdivision, the results among them tend to differ 
less and come closer to the uniformly distributed one.  
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5.3 Plastic analysis 

A first step in the plastic analysis is to verify the results obtained by the FE-analysis, 
this is achieved by comparing them with the results from SDOF and hand calculation. 
In Figure 5.11 the displacements are presented for the blast- and fragment load 
separately and the two loads applied together for the three analysis methods.  

 

Figure 5.11 Midpoint displacements with ADINA-,SDOF- and hand calculation 

results for the fragment load, the blast load and the blast and fragment 

load applied together (c). 

In section 5.2.1, it was concluded that for linear elastic material properties it is 
possible to super position the contribution from various loads independently of the 
load type. This is not possible when analyzing a structure with plastic material 
properties, as equation (5.3) describes.  

5�� J  d�@ \ �AgA��� p �@A��� \ �AA��� 
(5.3) 

where ��� J DEF · D F · 2 · ��� · � (5.4) 
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If the plastic displacements from different impulse loads are first taken to the power 

of two and divided by Cpl and then added, the term 
A�z�ªv«¬  is not taken into account, 

which results in a much smaller displacement. 

This can also be verified with Figure 5.11, where the blast- and fragment loads are 
applied separately and they do not, if summarized, correspond to the curve which both 
loads are applied at the same time.  

During the analysis, problems occurred when trying to imitate an ideally plastic 
material behaviour, by increasing the Young’s modulus by a factor hundred for both 
the elastic- and bilinear plastic elements. The result is presented in Figure 5.12 and as 
can be seen, the result differs much if compared to the curve which represents an 
increased Young’s modulus and constraints for the elastic nodes. The difference is not 
expected and cannot be explained. 

 

 

Figure 5.12 Midpoint displacements when the elastic- and bilinear elasto-plastic 

element’s Young’s modulus is increased with a factor hundred. 

 

5.4 Bilinear elasto-plastic analysis 

As a first step in the bilinear elasto-plastic analysis, the FE-results are compared to the 
results obtained in SDOF and by hand calculation in order to verify them. This is done 
for the blast- and fragment load separately and also when the two loads are applied 
together at the same time. The verification is presented in Figure 5.13, Figure 5.14 
and Figure 5.15 and as the figures shows, the difference between the results obtained 
by the FE analyses differs to the ones obtained in SDOF analysis and hand 
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calculation. Worth mentioning, the SDOF and hand calculation result are agreeing 
well.  

 

Figure 5.13 Comparison in midpoint displacement for the fragment load applied as 

uniformly distributed and analysed with ADINA, SDOF and hand 

calculation. 

 

 

Figure 5.14 Comparison in midpoint displacement for the blast load analysed with 

ADINA, SDOF and hand calculation. 
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Figure 5.15 Comparison in midpoint displacement for the blast- and fragment load 

analysed with ADINA, SDOF and hand calculation. 

The moment obtained in midsection of the beam is presented in Figure 5.16 and it is 
compared to the expected moment curve based on the displacements acquired in 
SDOF analysis. As can be seen, there are dips in the moment curve for the FE 
analysis, which means that the beam does not consume as much energy as the SDOF 
moment curve. This will influence the displacement, since the FE analysis needs 
larger displacement to reach the same amount of internal energy as the SDOF system, 
to level out the external energy. This can be one of the reasons for the substantial 
difference in displacement between the two analysis methods.  
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Figure 5.16 Midsection moment as a function of time obtained by the FE analysis 

compared to the intended moment obtained in the SDOF analysis.  

As Figure 5.16 shows, yielding occurs with tensioned upper side in an early state of 
the analysis. The corresponding deformation shape when this happens is illustrated in 
Figure 5.17. 
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Figure 5.17 Yielding in the beam with tensioned upper side at time t = 1.39 ms. 

 

 

Figure 5.18 Deformation shapes at time t = 4.72 ms and 7.09 ms where the dashed 

lines represents the elastic elements as completely straight. 
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Moment as a function of time for the sections x = 0.25L and x = 0.5L is presented in 
Figure 5.19 when both the blast- and fragment load are applied as uniformly 
distributed. The yield moment for the plastic element situated in the midsection is 
151.6 kNm and as can be seen, the moment in the section x = 0.25L is by far 
exceeding this value in a few time intervals. This means, that the model is not 
behaving the way it is intended to do and this can also explain the difference between 
the FE beam model result and the SDOF-result and hand calculation result which is 
presented in Figure 5.15.  

 

Figure 5.19 Moment when the blast- and fragment load are applied as uniformly 

distributed in sections X=0.25L and X=0.5L. 

With the bilinear elasto-plastic analysis, it is as in the plastic analysis, not possible to 
super position loads. In case of an elasto-plastic material response, contribution from 
both the elastic- and plastic parts of the material response needs to be included to get 
the corresponding displacement. Equation (5.5) is used to calculate the displacement 
for the bilinear elasto-plastic response. 

5��.�� J  5�� \ 5��A4 · 5�� 
(5.5) 

where upl is calculated with equation (5.3) and uel is calculated with equation (5.1).  

The results from this analysis can be seen in Figure 5.22 with the blast- and fragment 
load applied separately and one curve represents the two loads applied together. 
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Figure 5.20 Midpoint displacements for the blast- and fragment loads separately 

and both the loads applied at the same time as uniformly distributed.  

 

Figure 5.21 Midpoint displacements for run 1 D when the fragments are applied 

normally and when the true time, force and inclination of the fragments 

are considered. 
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When the fragment load is applied, concerning true time, true force and an inclination, 
the result is more or less the same as when the load is applied normally, this is 
presented in Figure 5.21. Hence, these factors will be neglected in further analysis. 

The elasto-plastic displacements for run 1 are presented in Figure 5.22, where the 
broken line represents the fragment load applied as a uniformly distributed load. It 
should be noticed that run 1 A simulates a worst case scenario, where the largest point 
loads are placed in the middle, with decreasing size towards the supports, i.e. a 
triangle load, see section 3.6.3. 

The difference in displacement between the various runs differs approximately 10 % 
with run 1 A not considered. Consequently, to apply the load applied as uniformly 
distributed seems to be a good estimation for the fragment point loads.  

 

Figure 5.22 Midpoint displacements for run 1 with bilinear elasto plastic material 

properties. 

In Figure 5.23 the displacements for run 5 are presented. If these results are compared 
to the ones obtained in run 1, the difference in displacement magnitude in between the 
runs is much smaller. The various runs seem to agreeing even better with the 
uniformly distributed line.  
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Figure 5.23 Midpoint displacements for run 5 with bilinear elasto plastic material 

properties. 

 

5.4.1 Conclusion 

The FE-results in the elasto-plastic analysis did not agree well with the results 
obtained by SDOF and simplified hand calculation. Two possible reasons for the 
substantial difference were discussed previously in this section. Though, the results 
when applying the fragmental load as a uniformly distributed load still seems to be a 
good approximation. 

 

5.5 SDOF results 

Values for elastic and plastic transformation factors for the four different load cases 
presented in section 2.8.3.5 and the load cases can once again be seen in Table 5.1. 
The corresponding deflection curves when the beam is exposed to only the fragment 
load with the appearance according to the four different cases is present in and for 
elastic and plastic material response respectively. 
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Table 5.1 The cases which are analysed in SDOF. 

Case 1 

 

Case 3 

 

Case 2 

 

Case 4 

 

 

Displacements for all the cases with the corresponding transformation factors are 
presented in Figure 5.24 and Figure 5.25 with linear elastic and ideally plastic 
material responses respectively.  

 

Figure 5.24 Elastic response for beam exposed to fragment load with appearance 

corresponding to four different load cases. 
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Figure 5.25 Plastic response for beam exposed to fragment load with appearance 

corresponding to four different load cases. 

 

5.6 2-D solid model 

5.6.1 Comparison with beam element  

In order to verify the results obtained by the 2-D solid model, it is compared to the 
results obtained by the beam element model. This is presented in Figure 5.26 and as 
can be seen, the displacements from the two models differ somewhat.  
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Figure 5.26 Midpoint displacement comparison for the beam- and 2-D solid element 

model. 

Since removal of concrete is to be modelled due to the fragmental impact, it is 
required to use an explicit solver, because equilibrium conditions do not need to be 
fulfilled when this solver is used. Hence, a control is performed that the two solver 
methods, i.e. implicit and explicit integration schemes, give comparable results. As 
Figure 5.27 shows, the two solver methods do agree very well.  
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Figure 5.27 Comparison in midpoint displacement for implicit and explicit solver 

when using 2-D solid elements. 

 

5.6.2 Results when removing concrete due to the fragmental impact 

The FE-simulation of the removal of concrete due to the fragmental impact is 
illustrated in Figure 5.28. As can be seen, the loss of mass in the top layer seems to be 
positive for the beam, since the displacement decreases with increasing removed 
mass. A corresponding analysis has been performed in the SDOF-program. The result 
is illustrated in Figure 5.29, and it seems that the loss of mass has the opposite effect 
on the beam compared to the results obtained by the 2-D solid model.  

Hand calculations have also been performed in order to understand the behaviour 
when beam looses stiffness and mass. The result from this analysis agrees with the 
results obtained by the SDOF program, i.e. the difference in displacement when 
removing different parts of the top layer should be small and tend to increase when 
the removed mass increases. For a detailed derivation of these calculations, see 
Appendix I. 
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Figure 5.28 2-D solid displacements for the different analyse methods when 

removing material due to the fragmental impact. 

 

 

Figure 5.29 SDOF displacements for the different analyse methods when removing 

material due to the fragmental impact. 
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6 Conclusions 

In all the analyses with different material responses it seems to be a good estimation 
to apply the fragmental load as a uniformly distributed load. For each further division 
of the fragment groups, the displacements in between the cases seems to differ less 
and is getting closer to the uniformly distributed displacement.  

The force inclination and the true distance between the detonation and the wall have 
also been investigated, and the difference was very small compared to applying the 
fragments as a vertical load with a distance of 5 m between the bomb and the wall. 
Hence, the fragment load is well approximated assuming a uniformly distributed load 
with a constant distance between the wall and the bomb, i.e. R = 5 m.  

In the elasto-plastic analysis, the beam does not behave as it is intended to do. The 
elastic part of the beam is exposed to moments more than the doubled yield moment 
in the elasto-plastic element in the mid section. Using elasto-plastic elements over the 
entire length of the beam would probably result in a more realistic behaviour of the 
beam. 

The simplified FE-methods for simulating the fragmental impact used in this thesis do 
not correspond to the expected behaviour which is generated by the SDOF and hand 
calculation. The analysis indicates that something is missing when using SDOF. The 
differences is probably due to that κMP in SDOF does not correspond to the real 
response.  Hence, this simple way to model such a complex problem needs to be 
further investigated and in this thesis it is mainly presented as a way to simulate the 
fragmental impact.  

Removing concrete in the FE analysis resulted in less displacement than if the 
concrete was not removed. However, SDOF and hand calculations resulted in the 
opposite effect, i.e. removal of concrete increases the displacements. This 
phenomenon cannot be explained in this thesis and further research is suggested. 
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Appendix A     

 

Table A.1  Material properties for concrete quality C25/30 

C25/30 

Compressive strength, fck 25 MPa 

Tensile strength, fctm 2.6 MPa 

Ultimate strain, εcu 0.0035 

Modulus of elasticity, Ecm 31 GPa 

 

Table A.2  Material properties for reinforcement quality B500B 

B500B 

Yielding stress, fyk 500 MPa 

Yielding strain, εyk 0.0025 

Modulus of elasticity, Es 200 GPa 

 

Table A.3  Geometrical properties of the beam 

Length of beam, L 2.7 m 

Height of beam, h 0.35m 

Width of strip, w 1 m 

Area of reinforcement in compression, As’ 1005 mm
2
/m 

Distance from compressed edge to 
reinforcement in compression, d’ 

0.05 m 

Area of reinforcement in tension, As 1005 mm
2
/m 

Distance from compressed edge to 
reinforcement in tension, d 

0.3 m 

 

Input data in analysis 
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Appendix B.1     

The cracking moment for the concrete section in figure B.1 will be calculated 
according to the equations presented in the thesis. 

 

Figure B.1 Double symmetric cross section in state I with strain distribution, 

subjected to pure bending. 

The location of the centre of gravidity for a double symmetric, uncracked section is: 

9�: J u2 J 0.352 J 0.175 . (B-1) 

The moment of inertia is calculated without consider the reinforcement as: 

�� J ��O12 J 1 · 0.35O12 J 3.57 · 10�O .Z (B-2) 

The cracking stress in concrete is equal to: H��,�!� J ,��� J 2.6 ��( (B-3) 

The cracking moment can now be calculated as: 

��� J ,��� · ��9�: J 2.6 · 10h · 3.57 · 10�O0.175 J 53.1 �­. (B-4) 

 M 
xgc 

d’ 

 d 

 z Center of gravity 
(CG) 
 

εc2 

εc1 

εs’ 

εs 

Calculation of cracking moment 
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Appendix B.2     

The moment for when the tension reinforcement yields in the cracked section seen in 
figure B.2 will here be calculated. 

 

 

Figure B.2 Double symmetric cross section in state II with strain distribution, 

subjected to pure bending. 

The expression for the location of the neutral layer for a cracked section was derived 
in section (xx) and can be calculated as: 

t · 9A2 \ d= ` 1g��� d9 ` *�g ` = · ��d9 ` *g J 0  (B-5) 

®     9 J 0.056 .  

where α is the ration between the modulus of elasticity of steel and concrete: 

= J ����� J 20031 J 6.45 (B-6) 

The moment of inertia for a concrete section in state II is calculated as: 

��� J t9O3 \ d= ` 1g��� d9 ` *�gA \ =��d* ` 9gA J (B-7) 

J 0.056O3 \ d6.45 ` 1g · 1005 · 10�h · d0.056 ` 0.05gA \ 6.45 · 1005· 10�h · d0.3 ` 0.056gA J 4.45 · 10�Z .Z 
 

The tensioned reinforcement is located at a distance zs from the neutral layer: <� J * ` 9 J 0.3 ` 0.056 J 0.244 . (B-8) 

The moment for when the reinforcement yields can now be calculated as: 

���� J ,�&���=<� J 500 · 10h · 4.45 · 10�Z6.45 · 0.244 J 141.146 �­. (B-9) 

εc2 

 εs 

εs’ 

εc1 

  x 

M 

σc2 

As’ 

  z 

σc1 

As 

Acc 

 Fictive concrete stress 

  H�d<�g J H��/= H�d<g J ��?�d<g 

 H�d<�g J H�/= 

Calculation of yielding moment 
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Appendix B.3                           

The ultimate moment for the section in figure(xx) will be calculated 

 

Figure B.3 Double symmetric cross section in state II with strain distribution, 

subjected to pure bending. 

 

The expression for the location of the neutral layer when the ultimate concrete strain 
is reached was derived in section 2.5.2.4 and can be calculated as: 

,�& · t · =� · 9 \ �� · d9 ` *�g9 · ?�B · ��� ` ,�& · �� J 0 (B-10) 

®     9 J 0.037 .  

The yield strain for the reinforcement can be calculated according to equation (xx). 

?�� J ,�&��  (B-11) 

The strain in the compressed and tensioned reinforcement can now be calculated 
according to equation B-12 and equation B-13 and the assumptions can be verified.  

?� J d* ` 9g9 ?�B J d0.3 ` 0.037g0.037 · 0.0035 J 0.025 o ?��   ¯�! (B-12) 

?�� J d9 ` *�g9 ?�B J d0.037 ` 0.05g0.037 · 0.0035 J `0.001229 S ?��  ¯�! (B-13) 

The moment, Mpl, for when the ultimate limit of the section is reached can now be 
calculated by consider the moment around the tensioned reinforcement according to 
the following equation: ��� J =� · ,�& · t · 9 · d* ` >� · 9g \ ?�� · �� · ��� · d* ` *�g J (B-14) 

 x 

 fck 

      > · 9 

= · ,�� 


� J = · ,�& · t · 9 


�� J H�� · ���  


� J H� · �� 

  εcu 

 εs’ 

εs 

As’ 

Acc 

As 

M 

Calculation of ultimate moment 
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J 0.81 · 25 · 10h · 0.037 · d0.3 ` 0.416 · 0.037g ` 0.001229· 200 · 10Q · 1005 · 10�h · d0.3 ` 0.05gJ 151.6 �­. 
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Appendix C     

The internal force for when the ultimate moment (calculated in appendix B.3) is 
reached in the mid section can be calculated according to equation C-1. 

��� J 8 · ���� J 8 · 151.62.7 J 449.2 �­ (C-1) 

The stiffness can be calculated according to linear elastic theory, the modulus of 
elasticity and the moment of inertia in state II were calculated in Appendix B. 

��� J 384������5�O J 384 · 31 · 10Q · 4.45 · 10�Z5 · 2.7O J 53.8 �­.  (C-2) 

The deflection in the mid section can now be expressed as function of the applied load 
and the stiffness as: 

5�� J ������ J 449.2 · 10O53.8 · 10h J 0.00835. J 8.35.. (C-3) 

 

Load-displacement relation 
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Appendix D    

In this Appendix, a representative Young’s modulus for state I and state II and the 
yield stress is calculated for both the wall strip with H = 350 and H = 300 mm.  

H = 350 mm 

The Young’s modulus is calculated by reducing the Young’s modulus for concrete 
with a factor gamma, which is the quotient of the moment of inertias from state I and 
state II to get a representative value for the two states. 

��.�� J ���γ  (D-1) 

where γ is: 

γ J ����� (D-2) 

II and III are the moment of inertias for the state 1 and state 2 respectively and is 
calculated with expressions (D-2) and (D-7) respectively. This gives: γ J 8.03 (D-3) 

And the corresponding Young’s modulus for the two states becomes: 

��.�� J ���γ J 31 ±�(8.03 J 3.86 ±�( (D-4) 

The yield stress is calculated by the following expression: 

,� J �B'  (D-5) 

Mu Ultimate moment capacity, calculated with expression (D-14) 

,� Stress when the beam goes from linear elastic to ideally plastic response  

Z Flexural resistance 

Since beam element in ADINA at maximum have seven integration points, the 
flexural resistance needs to be calculated with this kept in mind. The following 
expression is used: 

' J � · q�A4 ` +A12r (D-6) 

With H = 0.35 m, B = 1 m and e = h/6 the yield stress becomes: 

,� J �B' J 151.6 �­.1354 · tuA J 5.141 ��( (D-7) 

Material and cross section constants 
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It turned out that the beam element model in ADINA did not reach the intended 
internal resisting force, therefore the yield stress was further modified with 4.22 %: ,�� J ,� · 1.0422 J 5.358 ��( (D-8) 

The value above is used in the elasto-plastic analysis for the beam element model. For 
the 2-D solid element model, the same Young’s modulus is being used as the one 
presented above in equation (D-4), but the yield stress is calculated by assuming a 
stress state corresponding to a fully plastic cross section. The yield stress for the 2-D 
solid model then becomes: 

,� J �B' J 151.6 �­.tuA4 J 4.95 ��( (D-9) 

By using the same equations as presented above in this Appendix, but inserting H = 
300 instead of 350, the following material and cross section parameters are obtained 
for the 2-D solid model: ��.�� J 4.15 ±�( (D-10) ,� J 5.36 ��( (D-11) 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
101 

Appendix E   

 

In this appendix, simplified hand calculations concerning displacement are presented 
in a more detailed way. The formulas used in this appendix are taken from Nyström, 
2006 and for a more detailed derivation the reader is referred to Nyström, (2006). 

In order to verify the results obtained by the FE model, hand calculations are 
performed for both the linear elastic analysis as well as the bilinear elasto-plastic 
material response. In table E.1, the data concerning the geometry, density and 
Young’s modulus are presented.  

Table E.1 Input data for the hand calculations concerning displacement. 

Length (l) 2.7 m 

Width (w) 1.0 m 

Height (h) 0.35 m 

Density (ρ) 2400 kg/m3 

Young’s modulus (Ecm) 31 GPa 

 

The total mass, M is to be calculated as the volume of concrete times the density, see 
equation (E-1). M J l · w · h · ρ J 2268 kg (E-1) 

The loads generated by the reference bomb are in the hand calculations applied as 
impulse loads and the magnitude of these loads are presented in table E.2. 

Table E.2 Impulse loads. 

Blast load (IBlast) 7546 Ns 

Fragment load (IFragment) 3272 Ns 

 

Linear elastic analysis 

 

In case of linear elastic material properties, the displacement for different load cases 
can be super positioned, which is not possible for the bilinear elasto-plastic material 
response. In table E.3, the transformations factors for mass, load and internal force are 
presented for the simply supported beam which is considered in this project. 

 

 

  

Hand calculations for 

displacements 
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Table E.3 Transformations factors for the linear elastic hand calculations. 

κP κM κK κMP κKP 

0.640 0.504 0.640 0.787 1.0 

 

By following formula the displacement can be calculated: 

u·¸¹º»¼½ J I¿¸¹º» \ IÀÁ¹ÂÃ·Ä»√κÇÈ · iM · KÊÊ  
(E-2) 

where KII is calculated by equation (E-3): 

KÊÊ J 384 · E½Ã · IÊÊ5 · lO J 53.814 MNm  
(E-3) 

III is taken from Appendix B and is equal to: IÊÊ J 4.449 · 10�ZmZ  

This calculation gives a displacement of uelastic=0.0349 m and this value is compared 
to the results obtained by ADINA and SDOF in section 5.2. 

 

Ideally plastic analysis 

In case of ideally plastic material properties, the transformations factors presented in 
table E.4 are being used. 

Table E.4 Transformations factors for the ideally plastic hand calculations. 

κP κM κK κMP κKP 

0.5 1/3 0.5 2/3 1.0 

The following equation is used to calculate the displacement: 

uÍ¸¹º»¼½ J dI¿¸¹º» \ IÀÁ¹ÂÃ·Ä»gAκÎÈ · κÇÈ · 2 · RÃ · M 
(E-4) 

This gives a displacement of: uÍ¸¹º»¼½ J 0.0862 m (E-5) 

 

Bilinear elasto-plastic analysis 

When calculating the displacement with the bilinear elasto-plastic material response, 
the contribution from both the elastic and the plastic part is calculated and 
summarized. The transformation factors for the plastic material properties are 
presented in table E.4. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
103 

 

By use of the equation for displacement in case of ideally plastic material properties, 
the displacement for the plastic part is expressed as: 

uÍ¸¹º»¼½ J dIÐ�IÈgAκÎÈ · κÇÈ · 2 · RÃ · M 
(E-6) 

From the cross section analysis, the ultimate Moment capacity, Mpl is equal to: MÈÑ J 151.6 kNm (E-7) 

The internal resisting force then becomes: 

RÇ J 8 · MÈÑL J 449.2 kN 
(E-8) 

This gives a plastic displacement equal to: uÍ¸¹º»¼½ J 0.0862 m (E-9) 

The total displacement taking both the elastic and plastic response under consideration 
is calculated by following expression: 

u·¸¹º»Ó�Í¸¹º»¼½ J uÍ¸¹º»¼½ \ u·¸¹º»¼½A4 · uÍ¸¹º»¼½ J 0.0897 m 
(E-10) 
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Appendix F  

 

 

During the analysis, problems occurred in ADINA which resulted in values not 
comparable to the ones obtained by SDOF and hand calculations. To solve these 
problems many different things were tried and when using explicit solver instead of 
the implicit, it turned out that for beam elements with linear elastic material properties 
the explicit solution generates displacements around 14 % smaller compared to the 
ones obtained by the implicit solver. The curves for the two different solver methods 
and the displacement obtained by hand calculation can be seen in figure F.1. The 
maximum value obtained by the implicit method corresponds well to the hand 
calculated value. As the figure also shows, the period seems to be somewhat delayed 
for the explicit method compared to the implicit.  

 

Figure F.1 Difference in displacements for implicit- and explicit solver with linear 

elastic material properties. 

In theory, it is possible with a small difference between the two solver methods, but 
not as large as the results turned out to be in this project. 

The results differ also for plastic- and for elastic material response as can be seen in 
figure F.2 and figure F.3.  
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Figure F.2 Difference in displacements for implicit- and explicit solver with plastic 

material properties. 

 

 

Figure F.3 Difference in displacements for implicit- and explicit solver with 

bilinear elasto-plastic material properties. 
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Appendix G  

 

 

When the wall strip was analysed in ADINA, a controlled deformation was performed 
for the model with two controlled point loads acting on the plastic elements, see 
Figure  G.1. This was done in order to control that the material properties correspond 
to the input data and was only analysed for the model with two linear elastic parts and 
one bilinear elasto-plastic in the middle.  

 

Figure G.1 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 

When controlling the behaviour for different number of elements, following numbers 
were used: 3, 5, 9, 27, 45, 75, 135, 225 and 375. The internal resisting forces for the 
corresponding number of elements are presented in Figure  G.2. The resisting force 
obtained by the analytical solution is also shown in Figure  G.2, and as can be seen, it 
differs approximately 4 % from the value that the curve tends to reach. This error in 
ADINA can not be explained and to be able to get accurate results the calculated yield 
stress is increased with a factor 0.0422.  

 

P P 

Different results obtained in 

ADINA when using different 

number of elements 
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Figure G.2 Internal resisting force for the bilinear elasto-plastic model with 

different number of elements compared to the resisting force obtained 

by the analytical method. 
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Appendix H    

In this appendix is moment and reaction forces presented in figures for the linear 
elastic and the bilinear elasto-plastic material properties. The moments are presented 
in three points along the beam as a function of time. The three are: the midpoint, a 
quarter of the beams length, i.e. 0.675 m and three quarters of the beams length, i.e. 
2.025. 

Due to amount of data, only a few runs chosen are and analysed. The following runs 
will be presented: run 1 A, run 1 B, run 5 D and uniformly distributed. 

Linear elastic results 

In the elastic analysis, the fragmental load is applied separately to see how the beam’s 
behaviour differs between the different runs and when the load is applied as a 
uniformly distributed. 

 

Figure H.1 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 
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Figure H.2 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 

 

 

Figure H.3 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 
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Figure H.4 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 

 

 

Figure H.5 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 
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Figure H.6 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 

 

 

Figure H.7 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 
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Figure H.8 Controlled deformation for the bilinear elasto-plastic model with two 

point loads acting on the elasto-plastic nodes. 
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Appendix I  

 

 

Consider figure I.1 where a simply supported beam is exposed to a distributed load 
q(t). The beam will, after a certain time t1, loose a certain part of its mass. The total 
load can be subdivided into two parts; one where the mass is indifferent and the other 
where the mass has been decreased. 

 

Figure I.1 Impulse loaded, simply supported beam where part of the mass is 

removed. 

The impulse for each of the parts can be calculated as: 

�@ J y 
d3g*3�z
�{  (I-1) 

t 

t 

F(t) 

I1 

I2 

t1 t2 

m0 

m1 

t1 

m(t) 

t0 

t0 

L 

F(t)=q(t)·L 

F(t) 

m(t) v(t) 

Hand calculations for deflections 

when mass is reduced during 

impulse loading 
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�A J y 
d3g*3�ª
�z  (I-2) 

The momentum just before the beam loses a part of its mass can be written: 

0@ J .1 · 8@ J .1 · 81 \ �@ J �@       ®        8@ J �@.1 (I-3) 

The kinetic energy at this energy can, at this time, be calculated as: 

%@ J .1 · 8@A2 J .1 · �@A2 · .1A J �@A2 · .1 (I-4) 

The beam will now lose a certain part of its mass. In this case one seventh of the 
height of the beam will be affected by the mass removal and a certain proportion α of 
the mass in this layer will be decreased. The remaining part of the mass, m1, is 
expressed by a factor β times the initial mass, m0. The mass removal is illustrated by 
the equations below: 

0 S = S 1  

> J 7 ` =7  (I-5) 

.@ J > · .1  

By assuming that the energy in the beam is uniformly distributed over the volume, the 
energy after the mass removal has to decrease with the same proportion as the mass 
was decreased. The energy after the loss of mass can now be written: 

%A J > · %@ J > · �@A2 · .1 (I-6) 

We can now calculate the velocity of the remaining part directly after the mass loss 
as: 

> · �@A2 · .1 J > · .1 · 8A2         ®         8 J �@.1 J 8@ (I-7) 

We can see that the velocity will be conserved due to the fact that the kinetic energy is 
directly proportional to the mass. 

The momentum in the body at time t2 when the load is removed can be expressed as: 

0A J .@ · 8A J .@ · 8@ \ �A      (I-8) 

The velocity at time t2 can now, by combine equation (I-7) and (I-8) be written as: 

8A J �@.1 \ �A> · .1 (I-9) 
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The kinetic energy, or the externally applied energy, can now finally be calculated as: 

%A J %� J .@ · 8AA2 J > · .1 · � �@.1 \ �A> · .1�A
2  

(I-10) 

The displacements can now be calculated for elastic, plastic and elasto-plastic 
material response with the equations below. 

5�� J Ô> · .1,�� · � �@.1,�� \ �A> · .1,���A
�  

where .1,�� J .1 · D ©,�� (I-11) 

5�� J > · .1,�� · � �@.1,�� \ �A> · .1,���A
2 · ���  

where .1,�� J .1 · D ©,�� (I-12) 

5��,�� J 5�� \ 5��A4 · 5��   (I-13) 
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Appendix J   

 

Transformation factors for load and mass for a simply supported beam can usually be 
solved from the analytical expressions presented in Chapter 2. The expressions 
require however knowledge about the deformed shape which, for more complex load 
situations, can be hard to find. 

Consider load case three and four in figure J.1. When having plastic material 
response, the deformed shape is known and the transformation factors can be solved 
from the equations presented in Chapter 2. For elastic material response however, the 
deformed shape is more complex and an analytical solution is not easy to find. An 
alternative solution for the transformation factors is however possible.  

In commercial software for structure analysis, it is possible to plot the deflection 
along a simply supported beam with elastic response subjected to a certain load. In 
this case ADINA was used. 

The shape of the deflection can then be satisfactory described by a 4th order 
polynomial. When the expression of the deformed shape, u(x), is known for the actual 
load case, it can be inserted in the equations presented in Chapter 2 together with the 
expression for the load, q(x), and the transformation factors can be solved.  

 

 

Figure J.1 Load case 3 and 4. 
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Appendix K    

 

The transformation factors for ideal plastic and ideal elastic material response were 
derived from the condition that the deformed shape and the material response were the 
same independently of the magnitude of the load and the deflection. 

 

When the material response changes during the deflection, as for an elastic-plastic 
material response, the transformation factor has to be changed in order to perform 
calculations based on the proper shape of deformation, i.e. the proper internal energy. 

 

The transformation factor for the load κF is the same even if the material response 
changes but the transformation factor for the mass κM will change which result in a 
change of the combined transformation factor κMF.  

 

The transformation factor for the mass is larger for elastic material response than for 
plastic material response which can be seen as that the effective mass will decrease 
when the response changes from elastic to plastic. When using the central difference 
method to calculate the deflection for an SDOF-system the effective mass has to be 
changed during the calculation. A sudden change of the effective mass will however 
result in a sudden loss of internal energy which might result in unwanted effects. This 
is why the transformation factor for the mass cannot be changed suddenly. 

 

A better way to describe the transition from elastic- to plastic material response is to 
change the transformation factor and the effective mass gradually. Since the material 
response is a function of the internal resistance the transition should also be a function 
of the internal resistance.   

 

Figure K.1 illustrates how such a transition can be done. For a certain resistance 
where the deformed shape starts to change from elastic towards plastic, the 
transformation factor starts its transition too. A linear transition is the simplest one but 
more advanced functions for the transition can of course be used, the linear transition 
is however used in this project.  

 

Another choice that has to be considered is when, at what resistance, the 
transformation should start. The purpose of the transition is to imitate the reality as 
good as possible which is why the start point of the transition should be consistent 
with the behaviour of the material  

 

For reinforced concrete, it can be assumed that the material response will start to go 
from elastic towards plastic at the same internal resistance as when the reinforcement 
yields.  

Transition from elastic to plastic 

material response in SDOF 
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Figure K.1 Linear transition for transformation factors. 

The results obtained for kappa plastic, kappa elastic and kappa as function of the 
resistance are presented in figure K.2  

 

Figure K.2 Deflection as function of time when using kappa plastic, kappa elastic 

and kappa as function of the resistance. The same load is used. 
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The effective mass as function of time when changing the kappa value is presented in 
figure K.3. As can be seen, the duration of the transition is very short but it is still not 
a sudden loss of energy. 

 

Figure K.3 Effective mass as function of time. 
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Appendix L   

 

 

DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V85 

* 

FEPROGRAM PROGRAM=ADINA 

* 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1       0       0       0       0 

2       0       1.34    0       0 

3       0       1.36    0       0 

12      0       2.7     0       0 

13      0       0       1       0       

@ 

 

LINE STRAIGHT NAME=1 P1=1 P2=2 

LINE STRAIGHT NAME=2 P1=2 P2=3 

LINE STRAIGHT NAME=3 P1=3 P2=12 

 

FIXITY NAME=SIMPLY1 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

@ 

FIXITY NAME=SIMPLY2 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 @ 

 

 

Indata file for ADINA with elasto-

plastic material response 
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FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'SIMPLY1' 

12  'SIMPLY2' 

@ 

 

CROSS-SECTIO RECTANGULAR NAME=1 WIDTH=0.350000000000000, 

     HEIGHT=1.00000000000000 SC=0.00000000000000 TC=0.00000000000000, 

     TORFAC=1.00000000000000 SSHEARF=0.00000000000000, 

     TSHEARF=0.00000000000000 ISHEAR=NO SQUARE=NO 

      

************************** MATERIAL ************************* 

MATERIAL ELASTIC NAME=1 E=3.86E9 NU=0.200000000000000, 

DENSITY=2400.00000000000 ALPHA=0.00000000000000 MDESCRIP='concrete' 

 

MATERIAL PLASTIC-BILINEAR NAME=2 E=3.86E9 NU=0.2 YIELD=5.358e6 
DENSITY=2400 

************************** ELEMENTS ***************************** 

EGROUP BEAM NAME=1 MATERIAL=1 RINT=7 SECTION=1 

EGROUP BEAM NAME=2 MATERIAL=2 RINT=7 SECTION=1 
RESULTS=FORCES 

 

SUBDIVIDE LINE NAME=1 MODE=DIVISIONS NDIV=14 
RATIO=1.00000000000000 PROGRESS=GEOMETRIC CBIAS=NO 

@CLEAR 

1 

3 

@ 

 

SUBDIVIDE LINE NAME=2 MODE=DIVISIONS NDIV=1 
RATIO=1.00000000000000 PROGRESS=GEOMETRIC CBIAS=NO 

@CLEAR 

2 

@ 
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GLINE NODES=2 AUXPOINT=13 NCOINCID=ALL GROUP=1 

@CLEAR          

1 

3          

@ 

 

GLINE NODES=2 AUXPOINT=13 NCOINCID=ALL GROUP=2 

@CLEAR          

2          

@ 

************************ DYNAMICS ******************************* 

 

KINEMATICS DISPLACE=small STRAINS=SMALL UL-FORMU=DEFAULT 
PRESSURE=NO INCOMPAT=AUTOMATIC RIGIDLIN=NO 

 

MASTER ANALYSIS=DYNAMIC-DIRECT-INTEGRATION 

MODEX=EXECUTE TSTART=0.00000000000000 IDOF=0 OVALIZAT=NONE 
FLUIDPOT=AUTOMATIC CYCLICPA=1 IPOSIT=STOP REACTION=YES 
INITIALS=NO FSINTERA=NO IRINT=DEFAULT CMASS=NO 
SHELLNDO=AUTOMATIC AUTOMATI=OFF, SOLVER=SPARSE 

CONTACT-=CONSTRAINT-FUNCTION,TRELEASE=0.00000000000000 
RESTART-=NO FRACTURE=NO LOAD-CAS=NO, 

LOAD-PEN=NO MAXSOLME=0 MTOTM=2 RECL=3000 SINGULAR=YES, 

STIFFNES=0.000100000000000000 MAP-OUTP=NONE MAP-F§ORM=NO, 

NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-LAB=1 AXIS-CYC=0, 

PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO STABILIZ=NO, 

STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE FEFCORR=NO, 

BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO DEGEN=YES TMC-
MODE=NO, ENSIGHT-=NO 

 

ITERATION METHOD=BFGS LINE-SEA=DEFAULT MAX-ITER=50 
PRINTOUT=ALL PLASTIC-=1 

**************TIME FUNCTIONS********************************* 

TIMESTEP NAME=DEFAULT 

@CLEAR 

4000 0.00001 
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@ 

*****Blast load***** 

TIMEFUNCTION NAME=1 IFLIB=1  

@CLEAR 

0.0  0 

0.00012  0 

0.00022  1 

0.00124  0 

0.04     0 

@ 

 

*****Fragment loads***** 

TIMEFUNCTION NAME=2 IFLIB=1  

@CLEAR 

0.0  0 

0.00017  0 

0.00022  1 

0.00027  0 

0.04     0 

@ 

**************************Loads******************** 

***Blast load*** 

LOAD LINE NAME=1 MAGNITUD=4991071 

***Fragment load*** 

LOAD LINE NAME=2 MAGNITUD=24234412 

 

APPLY-LOAD BODY=0 

@CLEAR 

1  'LINE' 1 'LINE' 1 0 1 0.00000000000000 0 -1 13 0 0  'NO', 

     0.00000000000000 0.00000000000000 1 0 

2  'LINE' 1 'LINE' 2 0 1 0.00000000000000 0 -1 13 0 0  'NO', 

     0.00000000000000 0.00000000000000 1 0 

3 'LINE' 1  'LINE' 3 0 1 0.00000000000000 0 -1 13 0 0  'NO', 

     0.00000000000000 0.00000000000000 1 0 

6 'LINE' 2  'LINE' 1 0 2 0.00000000000000 0 -1 13 0 0  'NO', 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:81 
124

     0.00000000000000 0.00000000000000 1 0 

7 'LINE' 2  'LINE' 2 0 2 0.00000000000000 0 -1 13 0 0  'NO', 

     0.00000000000000 0.00000000000000 1 0      

8 'LINE' 2  'LINE' 3 0 2 0.00000000000000 0 -1 13 0 0  'NO', 

     0.00000000000000 0.00000000000000 1 0      

***************************** THE END ************************** 

 


