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Design with regard to explosions

Master’s Thesis in the International Master’s Programme Structural Engineering

ULRIKA NYSTROM
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Chalmers University of Technology

ABSTRACT

When designing a construction to be able to withstand the high pressure caused by a
shock wave simplifications can be used in order to facilitate the calculations. By
literature studies simplified methods used to analyse beams subjected to dynamic
loads are compiled and in some cases also compared with FE-analysis in order to
verify the results.

The method of transforming and reducing deformable structures into single degree of
freedom system, giving calculations easy to handle, is discussed in this report. When a
beam is simplified into a single degree of freedom system the beam is assumed to
have a specific shape of deformation and therefore tabled beam equations can be used
in order to estimate the capacity of the beam. The beam equations can be used when
the load is either infinity short (impulse load) or infinity long (pressure load). In order
to utilize these equations also for arbitrary load durations so called damage curves are
used. The behaviour of the structure subjected to dynamic loads can also be analysed
by using an equivalent static load, where the impulse load is substituted with a static
load that will give deflections corresponding to the ones achieved with the impulse
load.

The simplified methods discussed above are valid for beams in general but since
shelters often are made of reinforced concrete, which have a complex behaviour, these
beams and their response to both static and dynamic loads will be studied more in
detail. A short and brief review of the minimum requirements when designing shelters
due to the Swedish shelter regulation will be done.

Key words: Explosions, dynamics, impulse load, reinforced concrete, SDOF system,
equivalent static load, damage curves



Konstruktion med avseende pd explosioner
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SAMMANFATTNING

Vid analyser och berdkningar av byggnader utsatta for explosionsartade laster kan
forenklade handberékningsmetoder anvéndas. Genom litteraturstudier har nagra
forenklade berdkningsmetoder studerats och sedan samlats i denna rapport. I vissa fall
ar resultat berdknade med hjdlp av den forenklade berdkningsmetoden jamforda med
resultat frdn FE-analys for att verifiera metoden.

Balkar, och andra deformerbara kroppar, kan omvandlas till ett enfrihetsgardsytem
som tillskrivs ekvivalenta egenskaper for att ge samma deformation som den
deformerbara kroppen. Nir balken har omvandlats till ett enfrihetsgardsystem kan
tabellerade, s& kallade, balkekvationer anvindas for att direkt uppskatta balkens
respons, dessa dr dock begrinsade till att bara vara applicerbara for laster som beter
sig mycket likt antingen en idealisk impuls- eller steglast. Med hjélp av skadetabbeler
eller skadekurvor kan ocksa responsen for mer generella laster uppskattas. For att
kunna utnyttja den for ingenjorer vilbekanta berdkningsgingen for statiska lastfall
kan en ekvivalent statisk last berdknas utifran det dynamiska lastfallet.

De forenklade berdkningsmetoderna dr generella och kan anvidndas for olika balkar
och materialtyper. Eftersom skyddsrum, och andra byggnader som dimensioneras for
explosionslaster oftast 4r gjorda av armerad betong behandlas detta material mer i
detalj.

Anvindningen av de ovan nimnda forenklade berdkningsmetoderna kriver dock en
viss fOrstaelse av hur balkar utsatta for starka, dynamiska laster uppfor sig i
verkligheten.

Nyckelord: Explosioner, dynamik, impuls last, armerad betong, enfrihetsgradsystem,
SDOF-system, ekvivalent statisk last, skadekurvor
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Area

Equivalent area in stadium I

Equivalent area in stadium II

Damping

Equivalent damping

Modulus of elasticity

Inclination of stress-strain relation in elastoplastic range
Modulus of elasticity for concrete

Modulus of elasticity for steel

Shear modulus
Moment of inertia
Impulse (general)
Characteristic impulse

Stiffness
Inclination of load-displacement curve in elastoplastic range
Equivalent stiffness

Length of the beam

Mass

Moment

Moments at support A and B, respectively

Equivalent mass

Maximum moment in elastic range

Ultimate moment, all fibres in a cross-section have yielded
Maximum field moment

Support moment

Moment when yielding starts

Axial force
External load

Mean value of external load
Equivalent static, concentrated, load
Characteristic pressure load

External load when first crack occurs
External load when yielding starts
External, ultimate load

Peak value of transient load

Internal force
Internal force when first crack occurs

Equivalent internal force

Maximum internal force
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Internal force when yielding starts

Shear force
Kinetic energy
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Acceleration

Mean acceleration

Width of beam/cross-section

Effective height of cross-section
Characteristic value of material property
Design value of material property

Yield stress for steel

Height of beam/cross-section
Distributed impulse
Distributed load

Equivalent static, uniformly distributed, load

Distributed load when first crack occurs

Maximum value of distributed load in elastic range

Distributed ultimate load

Distributed load when yielding starts

Load when plastic hinges are formed but the beam is not yet a mechanism
Momentum

Time

Total time duration of transient load

Displacement/deflection

First derivative of u with respect to time ¢, velocity
Second derivative of u with respect to time ¢, acceleration
Curvature

Displacement/deflection when first crack occurs
Displacement/deflection corresponding to ultimate load
Displacement of system point

Displacement/deflection when yielding starts

Velocity

First derivative of v with respect to time ¢, acceleration
Mean velocity

Velocity of system point

Coordinate
Coordinate, distance fro compressed edge in cross-section
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Strain

Strain velocity

Concrete strain

Strain when first crack occurs
Ultimate concrete strain
Strain for ultimate load
Strain when yielding starts

Impulse load factor
Partial safety factor taking the safety class into consideration
Partial safety factor taking the insecurity when determining parameters

into consideration
Pressure load factor

Partial safety factor used in the Swedish code BBK 04

Transformation factor for linear elastic material

Average value of transformation factor for linear elastic and ideal plastic
material

Transformation factor for ideal plastic material
Transformation factor for the internal force

Combined transformation factor for the internal force and external load
Transformation factor for the mass

Combined transformation factor for the mass and external load
Transformation factor for the external load

Density

Reinforcement amount

Stress
Concrete stress

Stress when first crack occurs
Ultimate stress/Yield stress
Steel stress

Stress when yielding starts
Yield stress

Circular frequency
Shear stress
Poisson’s ratio
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1 Introduction

1.1 Background

Explosions are accidental or intentional actions that need to be considered in the
design of structures for various applications. Except from apparent cases, such as
military installations and civil defence shelters, design with regard to explosions is
required for instance in the processing industry and for tunnels.

When designing a construction to be able to withstand the high pressure caused by a
shock wave (for example shelters), simplifications can be used in order to facilitate
the calculations.

The methods used are rather well documented when having a linear elastic or ideal
plastic material but shelters, and other structures exposed for shock loads, are often
made of reinforced concrete which has a more complex behaviour. This makes the
application of the methods more complicated and in order to keep the calculations
easy to handle simplifications must be used. In practice, engineers usually not need to
perform dynamic calculations why it is of interest to translate a dynamic load and its
affects to a static load case giving similar response.

1.2 Aim

The aim of this thesis is to put together information about available design approaches
for impact loading on structures in general and reinforced concrete structures in
particular.

It shall be described how structures can be designed for impulse loading by means of
simple hand-calculation approaches and to examine the agreement between such
simple methods and more advanced analyses like FE analyses. These methods and the
corresponding calculation processes shall be carefully described and documented.

The response of a structure subjected to a load also depends on the material behaviour
and the difference in the response for linear elastic and ideal plastic materials shall be
examined.

1.3 Method

Literature studies have been done in order to find, understand and compile different
simple methods used when analysing the behaviour of structures exposed for transient
loads. The agreement between such simple methods is investigated by comparing
analyse results with the real behaviour, assumed to be found by using finite element
method. The finite element analyses are made by means of the commercial finite
element software ADINA (2004). Literature studies have also been made in order to
get a deeper understanding of explosions, their appearance, laps and effects.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 1



A beam with cross-section chosen according to requirements in the Swedish shelter
regulations will be analysed. The capacity of the beam is calculated by means of the
Swedish code BBK 04, see Boverket (1994), and directions in the Swedish shelter
regulations, Rdddningsverket (2003).

1.4 Limitations

The methods described in this thesis, used in order to simplify analyses of structures
subjected to transient loads, can be used on different types of deformable structures.
However, only the application on beams is shown in this thesis.

Complex material behaviour leads to complex calculations and expressions why only
idealized material behaviours; linear elastic, ideal plastic and trilinear material
respectively, is used here. When analysing concrete beams the effects of temperature,
creep and shrinkage is not taken into account.

Explosions and their effects is a huge subject which requires long time to fully
understand. Due to the limited time and in order to keep this scope within reasonable
limits only explosions in air and the transient loads caused by them are discussed in
this thesis. Secondary effects from the explosions such as collapse of nearby buildings
are also not taken into account.

1.5 QOutline of the report

The outline of the report can be divided into basic theory (Chapters 2 to 5), design
methods (Chapters 6 to 11) and application of the design methods (Chapter 12).

In Chapters 2, to 5 basic theory of explosions in air, material responses, dynamics and
solutions methods for differential equations are shown in order to facilitate the
understanding for the rest of the report.

Since analyses of the response of beams subjected to dynamic loads requires a good
knowledge of dynamics and heavy calculations, not manageable to perform by hand,
it is of interest to simplify these calculations. In Chapter 6 it is discussed how the
response of beams subjected to dynamic loads can be calculated by transforming the
beam to an equivalent single degree of freedom system (SDOF system) which will
achieve the same displacement as a prescribed point in the beam, the so called system
point. When transforming beams to equivalent single degree of freedom systems
transformation factors for the load, mass and the internal force are used. These are
derived for linear elastic and ideal plastic material respectively In case of trilinear
material the transformation factors are not derived instead it is discussed how the
transformation factors for linear elastic and ideal plastic material can be used in order
to transform beams with trilinear material behaviour, for example reinforced concrete
beams, to equivalent single degree of freedom systems.

2 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



In Chapter 7 the response of a beam calculated by use of the method described above
is compared with results from finite element analyses, which are assumed to give
results close enough to the reality.

The choice of transformation factors in case of trilinear material is not trivial and is
further discussed in Chapter 8 where also the FE models used in Chapter 7 are
discussed.

Characteristic pressure and impulse loads are two idealized loads which are defined
and discussed in Chapter 9. Here also expressions for the maximum displacement for
single degree of freedom systems and to beams equivalent single degree of freedom
systems are derived.

When calculating the response of a beam subjected to a dynamic load differential
equations have to be solved for each time step in the analysis. Even though the use of
equivalent single degree of freedom systems simplifies the calculations a lot it is very
hard to perform results for a general load case without use of computers.

The response of a general impulse load acting on a beam or single degree of freedom
system can be calculated by replacing the impulse load with an equivalent static load.
The expressions for the, to the impulse load, equivalent static load is derived and
shown in Chapter 10.

In case of a general load, somewhere in between a characteristic impulse and pressure
load, the response of a single degree of freedom system can be estimated by use of
either tables of damage or damage curves. In Chapter 11 the values in the tables of
damage are calculated and the corresponding damage curves are shown for linear
elastic and ideal plastic material. It is also discussed and shown how these can be used
in practice.

Concrete is a complex material and therefore also the response of reinforced concrete
beams are complex. In Chapter 12 the behaviour of a reinforced concrete beam
subjected to dynamic loads is discussed.

In Chapter 13 conclusions and ideas on further investigations are shown.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 3



2 Explosions

Here only a very brief review of explosions and their resulting shock waves are
shown. For more and detailed information about this subject the reader is referred to
for example Rédddningsverket (2004).

When a charge detonates in the air a sphere with very high temperature and pressure
will form. This sphere will expand very fast and is spread as a shock wave from the
centre of detonation. The temperature and the pressure will decrease with increased
distance from the detonation centre, see Figure 2.1 below.

Centre of detonation

The pressure and temperature
in the shock front decreases
with increased distance to the
centre of detonation

Figure 2.1  Schematic figure for detonation in air.

An idealized shock wave is shown in Figure 2.2 where the different phases can be
seen. The shock front gives an instantaneously increase of pressure (and temperature)
and is followed by the compression and negative phase. The meaning of the phases,
and the devastation they can cause, are illustrated in Figure 2.2.

Pressure
A

Compression phase

Negative phase

Shock front

» Time

Figure 2.2 Idealized shock wave.
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Pressure

i/

© 3 —=-

Figure 2.3 House exposed to shock wave. Based on NATO (1996).

When analysing buildings exposed for shock waves the transient load is often even
more idealized than the one shown in Figure 2.2. In analyses made in this report the
transient loads are assumed to have a simplified appearance, see Figure 2.4 where P,
and ¢; is the maximum value of the load and the duration of the load respectively. The

negative phase is not taken into account and the load is often assumed to be triangular
in time.

i

v

Figure 2.4  Idealized transient load caused by explosions used in this report.

When a bomb detonates close to a reflecting surface the intensity and the spreading of
the resulting shock wave will be affected. For an idealized case, where the reflecting

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 5



surface is assumed not to absorb any energy, the shock wave spreading close to the
surface will have twice the energy of a shock wave spreading in the air without any
nearby reflecting surfaces as shown in Figure 2.5. This can be explained by the fact
that half the energy amount is prevented from spreading in its natural direction,
instead the energy is reflected.

explosion

ALV

Free Corresponding free

Explosion close explosion

to reflecting
> surface )
L NV

.. ey =il RN
: . ’\'lll.'/' v {"-1:--; I .

./"||l\\

ar
e
,.'l'.

Figure 2.5

. y Half the energy is prevented
w7 7 by the reflecting surface

Explosion in air and close to reflecting surface respectively. Based on
Réiddningsverket (2004) where the notation W represents the size of the
charge.
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3 Materials

The response of a loaded structure is highly dependent of the material and its
behaviour. In this report only idealized material behaviour are discussed; linear
elastic, ideal plastic and a trilinear material. For ideal plastic and trilinear behaviour
the fibres in the loaded structure can yield, meaning that the theory of elasticity is not
applicable. In order to analyse a structure with plastic behaviour theory of plasticity
and plastic hinges (further discussed in Section 3.2) are used in order to predict the
response.

3.1 Material responses

3.1.1 Linear elastic material

In case of linear elastic material the stress ¢ is linear proportional to the strain ¢ in
compliance with Hooke’s law:

o=E} (3.1)

where E i1s the modulus of elasticity. A principle relation between stress and strain for
a linear elastic material is shown in Figure 3.1.

g

/e

> ¢

Figure 3.1  Principal relation between stress and strain for a linear elastic
material.

The internal resisting force R in a structure subjected to a load will thus be linear
proportional to the displacement u, i.e.:

R=K0 (3.2)

where K is the stiffness of the structure. A principle relation between the internal force
and the displacement for a linear elastic material is shown in Figure 3.2.
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VaLS

Figure 3.2 Principal relation between internal force and displacement for a linear
elastic material.

The maximum value of the internal force in a structure with linear elastic material is:
R =K, (3.3)

where u,,,, 1s the maximum value of the displacement. When the load is removed the
structure will return to its unloaded position.

3.1.2 Ideal plastic material

The relation between stress o and strain ¢ for an ideal plastic material is shown in
Figure 3.3 where o, is the yield stress.

Aa

> g

Figure 3.3 Principal relation between stress and strain for an ideal plastic
material.

As seen in Figure 3.3 no deformations will occur until the stress is higher or equal to
the yielding stress but as soon as the yield stress is reached and deformation starts the
stress in the structure equals the yielding stress.

The internal force R in a structure, with ideal plastic material, subjected to a load P
can now be expressed as:

R=P for P<R,6 ifalso u=0

R=R, for P2R, or u#0 S

where R, is the maximum value of the internal force. A principle relation between the
internal force and the displacement for an ideal plastic material is shown in Figure
3.4.

8 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



> u
Figure 3.4 Principal relation between internal force and displacement for an ideal
plastic material.

3.1.3 Trilinear material

Reinforced concrete beams have a trilinear material response. This is further
discussed in Chapter 12 but here the idealized behaviour of reinforced concrete beams
is shown. The idealized load-displacement curve for a concrete beam is shown in
Figure 3.5 where R,, is the internal force when the first crack occurs in the beam and
R,, 1s the maximum value of the internal force valid when the ultimate load level is
reached. u., and u,, are the values of the displacement when the first crack occurs and
when the ultimate load level is reached respectively. K is the stiffness before the first
crack occurs and K’ is the inclination of the curve in the range in between u,, and u,,.

AR

ZIK'

/¢

ucr upl

Figure 3.5  Principal relation between internal force and displacement for a
trilinear material.

The internal force R in a structure, with trilinear material, subjected to a dynamic load
P(t) can be expressed as:

R=Ku for P(t) <R,
R = RCI‘ + K'(u _uCI‘) for RCI‘ S P(t) < Rm (3'5)
R=R, for R, < P(?)

where R, also can be written as:

RCV = K B"C?" (3'6)
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The trilinear material response can be divided into elastic, elastoplastic and plastic
range as shown in Figure 3.6.

AN
>

] Elastoplastic range Plastic range u

Elastic range

Figure 3.6  The different ranges for a trilinear material.

A reinforced concrete beam will have linear elastic behaviour until yielding starts.
However, in this report linear elastic behaviour is assumed until the ultimate load is
reached meaning that the stiffness of the beam in the range in between R, and R,, will
change when the load increases, see Figure 3.7. This behaviour can be explained by
the fact that more and more cracks will occur in the beam when the load increases.

AR
R _
7
R A e
1 7
A&7 K, > K, for R <R,
v
// /ZKZ
v
/,/
Ve
, . >
U U,

Figure 3.7  Stiffness in the elastoplastic range for a reinforced concrete beam.

Consider a beam subjected to a transient load with maximum value P; large enough to
give the internal force a value R;. If the load is removed when R, <R;<R, the beam
will return to its unloaded position and the corresponding relation between the internal
force and displacement is shown in Figure 3.8.
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u, Tu

Figure 3.8  Response of a concrete beam when loading and unloading a force F,.

The beam i1s reloaded with a transient load with maximum value P, and the internal
force will now reach a value R,. If the beam still is in the elastoplastic range

(R<R;<R,) and the load is removed again the response curve is as shown in Figure
3.9.

AR
R -
Rl' .
/f Kl
// dKz
,/
/,
T > 4
I/ll 1/12

Figure 3.9  Response of a concrete beam when loading and unloading a force P,.

If, once again, a transient load is applied, this time with maximum value P;, big
enough to reach the plastic range of the response curve (R;=R,,) and then the load is
removed there are plastic deformations, see Figure 3.10. The stiffness when unloading
is the same as the secant stiffness to the point (u,,R,,). As soon as the plastic range is

reached the stiffness of the beam is constant, as long as the failure criterion is not
fulfilled.
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Plastic displacement

Figure 3.10 Response of a concrete beam when loading and unloading a force P,.

3.2 Theory of plasticity and plastic hinges

In this section theory of plasticity and plastic hinges for beams with double symmetric
cross-sections are discussed. Theory of plasticity, as well as theory of elasticity,
assumes a linear strain distribution over the height of the cross-section.

In the elastic range, when no fibres in the cross-section yield, Hooke's law is used as
constitutive relation and the stress is linear proportional to the strain, see
Equation (3.1). Therefore also the stress distribution will be linear distributed over the
height of the cross-section in the elastic range. The stress and strain distributions in
the elastic range for a cross-section in a beam subjected to pure bending are shown in
Figure 3.11.

[
I /7
| M 1/ - 1/
: D E(z) o(z)= E(z) [E
N S B . P A e A /A
: R
Cross-section Part of the beam Strain distribution & Stress distribution o

Figure 3.11 Stress and strain distribution in beam subjected to bending (in elastic
range).

When the load applied to the beam, and consequently the bending moment inside the
beam, has increases the outer, most stressed, fibres in the most strained section will
reached the yield stress, see Figure 3.12.a. The maximum elastic moment has been
reached and can be expressed as:

12 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



— UJ/I

where o, is the yield stress, / is the moment of inertia and 4 is the height of the cross-
section.

For a rectangular cross-section the moment of inertia is:

3
1:%

= (3.8)

where b is the width of the beam.

Inserting Equation (3.7) into Equation (3.8) the maximum elastic moment for a
rectangular cross-section can be expressed as:

M,=0,7~ (3.9)

If the load increases the elastoplastic range is entered and the stress will only be linear
proportional to the strain in the part of the cross-section where yielding have not
started, see Figure 3.12.b. The higher load the smaller elastic part and a proportional
increasing curvature.

Just before all fibres in the cross-section has yielded the ultimate value of the moment
M, 1s reached. The case when the whole cross-section has yield is an idealized state
where the strain-stress curve has an infinitely long plastic range see Figure 3.12.c.
Since the elastic part of the cross-section is infinitely small just before all fibres yield
the ultimate moment, according to Samuelsson, Wiberg (1999), can be expressed as:

=g bE” (3.10)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 13



Yielding starts in ; :
a) .

the outer fibres
M=M,

Parts of the

b) cross-section has
yielded
Mel < M < Mpl

Yielding in the
whole cross-
section
M=M,

Figure 3.12 Stress and strain distributions in beam subjected to bending when a)
yielding starts in the outer, most stressed, fibres, b) parts of the cross-
section (and fibres close to the cross-section) have yielded and c) the
whole cross-section has yielded (idealized case).

When the ultimate moment M, is reached in the most strained section almost all
deformation occur here and in the very surrounding. The curvature is very large in this
section while it is rather small in the rest of the beam. Since the length of the part with
large curvature is very limited it can be assumed that all deformation takes place in a
very small deformable element, a so called plastic hinge. The rest of the beam is
assumed to be elastic and are therefore straight and the moment in the plastic hinges
are assumed to be constantly equal to the ultimate moment M,,. This reasoning is
shown in Figure 3.13 for a simply supported and a fixed beam respectively.
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Figure 3.13 Models with plastic hinges for a) a simply supported beam and b) a
fixed beam.

In case of simply supported beam only one plastic hinge is needed to create a
mechanism and if the load increases even more the beam will undergo uncontrolled
deformation.

For a fixed beam, with constant capacity, yielding starts at the supports and for a
certain load plastic hinges are formed here. Since no mechanism is formed yet the
load can be increased and the beam now acts as a simply supported beam subjected to
moment M,; at the supports. If the load remains constant at this level unlimited
deformations can, in theory, occur. However, when the load is increased yielding
starts also in the middle of the beam and when all fibres in this section have yielded a
plastic hinge is formed and the beam has become a mechanism, see Figure 3.13.b.
This is further discussed below where also the expressions for the moment at the
different stages are shown.

For the fixed beam, subjected to a uniformly distributed load, the outer most stressed
fibres at the supports will start to yield when the moment in this section is:
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where ¢, is the corresponding value of the uniformly distributed load and L is the
length of the beam.

q

E
2 Z

=
s

Moment distribution

Figure 3.14 Moment distribution in beam subjected to uniformly distributed load
according to theory of elasticity (¢ < q,,).

If the load is increased even more yielding zones will be formed at the supports and
for a certain load g, plastic hinges have been formed in these sections and the
moment is:

L2
M, = —q@% (3.12)

Due to the plastic hinges by the supports the beam now behaves like a simply
supported beam subjected to support moments AM,; and the uniformly distributed load
g if the load increases. The moment distribution is statically determinable. When the
load increases even more the moment in the midpoint of the beam will reach the
ultimate value M,; and the beam is just about to form a plastic hinge in the midpoint.
The moment in the midpoint is calculated by use of equilibrium conditions:

M. =M, = (3.13)

middle

The uniformly distributed load ¢ in Equation (3.13) is the load for which the
mechanism is about to form and it is expressed as:

16M
— (3.14)

q:qpl: Lz
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Figure 3.15 Moment distribution in beam subjected to uniformly distributed load
when mechanism is about to form (q =q ).
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4 Basic dynamics

The term dynamics is used for theory of moving systems and can be subdivided into
kinematics and kinetics. Kinematics is a pure geometrical description of the
movement while kinetics describes the cause of the movement (forces).

4.1 Kinematics

The simplest form of motion of a particle is when the particle moves along a linear
axis (the x-axis in Figure 4.1) and the position of the particle is described by a vector
X(t) at time ¢. At time ¢+t the position of the vector is x+4x.

© O » X
X x+MAx
t t+ At

Figure 4.1  Linear motion of particle.

4.1.1 Velocity

The velocity of a particle moving linearly can be derived by studying how fast the
position of the particle is changing. At time ¢ the particle has position x and at time
t+At the position is x+4x meaning that during the time interval A¢ the particle has
moved the distance Ax. The mean velocity during the movement from position x to
x+4x can then be stated as:

Ax
At

y =

4.1)

Letting the time interval A¢ go towards zero the change of distance Ax will approach 0.
The mean value of the velocity will then approach a boundary value that is defined as
the velocity of the particle at time ¢. The velocity of the particle is thus given by:

v(t)=v=lim—="=% (4.2)

By definition the particle is moving in positive direction if the velocity is positive and
vice versa.
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4.1.2 Acceleration

The acceleration of a particle that is moving linearly can be derived by studying how
fast the velocity of the particle is changing. At time ¢ the particle has position x and
velocity v and at time t+A4¢ the position is x+4x and the corresponding velocity is
v+4v meaning that during time interval 4¢ the velocity of the particle has increased
with A4v. The average value of the acceleration can be stated as:

Av
a=— 43
a= (4.3)

In the same way as when deriving the velocity of the particle the acceleration can be
written as:

= 5 (4.4)

When the particle is moving in the positive direction and the acceleration is positive,
the velocity is increasing. A negative value of the acceleration gives retardation. If,
instead, the particle is moving in the negative direction a positive value of the
acceleration gives retardation and if the acceleration is negative the value of the
velocity is increasing.

4.2 Kinetics

The response of bodies subjected to dynamic forces can be described by means of
differential equations. Before deriving these equations of motions for dynamic loads
the impulse of a load and the work performed by a load are defined.

4.2.1 Definitions of impulse and work
4.2.1.1 Impulse

Even though static, constant loads often are used in analyses loads are often varying in
time and in order to describe how these forces influences the motion of the structure
the impulse is introduced.

The impulse is defined as a step change in an object’s momentum. For a mass, M,
with velocity, v, the momentum is:

PEMDG (4.5)

At time ¢ the impulse is / and at time 7+4¢ the impulse is /+47 (see Figure 4.2)
meaning that the increase of the impulse during time A4z is 41. As mentioned above the
impulse is defined as the change in the momentum and the increase of the impulse can
therefore, by means of Equation (4.5), be written as:
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Al =Ap =M [y (4.6)

where 4p is the change of the momentum during time 4¢ and Av is the change of
velocity during time Az.

Load P(z)
A

I »Time ¢
Figure 4.2 Load-time diagram where P is the average value of the load in

between time t and t + M\t .

The average value of the acceleration a is defined in Equation (4.3) and together with
Equation (4.6) the change of impulse during time 4¢ can be written as:

Al = M & M (4.7)

By use of the second law of Newton where the force P is defined as the product of the
mass and the acceleration the average value of the force P is defined as:

P=MG (4.8)

By use of Equations (4.7) and (4.8) the change of impulse can now be written as:

Al = P [\t (4.9)
giving:
— Al
p=20 4.10
N (4.10)

Letting the time interval 4¢ go towards zero the change of impulse A7 will approach
zero as long as the impulse is not a characteristic impulse as shown in Figure 4.3. The
meaning of a characteristic impulse is further discussed in Section 9.2.
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Figure 4.3 Characteristic impulse.

The mean value of the force will then approach a boundary value that is defined as the
force applied to the particle at time z. The force applied to the particle is thus given
by:

Al _dI
Pt)=P=lim—=" < dI =Pt 4.11
() MO NF di @ @.10)

The change of the impulse can now, finally, be written as:

I+AI t=t+At t=t+At
de: J.P(t)dt o A= J.P(t)dt (4.12)
I = =

1=t t=t

The impulse for a load is thus:

t=4,

= J'P(t)dt (4.13)

where ¢, 1s the time for which the load is removed.

4.2.1.2 Work

Work is a transfer of energy from one physical system to another, for example from a
load to a structure. When there is no frictional force and a force acts on a body, the
work done by the force is equal to the increase of the kinetic and potential energy of
the body since all the energy expended by the exerting force must be gained by the
body. However, in practice some energy will be lost due to friction and heat
development.

When a particle is at position x the work is /7 and at position x+4x the work
performed by the external load is /7+A411 (see Figure 4.4) meaning that the increase of
work when the particle is moving the distance Ax is A71.
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Y x+Ax > Distance x

Figure 4.4  Load-distance diagram.
The change of work, represented by the shaded area in Figure 4.4, is expressed as:

An=FPmx -~ p=201 (4.14)
Ax

where P is the average value of the force within the distance Ax.

Letting the distance Ax go towards zero the change of work 477 will approach 0. The
mean value of the force will then approach a boundary value that is defined as the
force causing the displacement x of the particle. This force is thus given by:

Pey=P=1im20 =9 an = p(x) i (4.15)
a0 Ay dx

The change of the work can now, finally, be written as:

n+An x=x+Ax x=x+Ax
[an= [Pdx - AN= [Pdx (4.16)
n X=x X=x

The total work performed by a load P is thus:

X:Xmav

N= [Pdx (4.17)

x=0

where X, is the total displacement caused by the load.

4.2.2 Mechanical vibrations

When deriving basic dynamic equations a body where the position can be defined by
one coordinate is used. Such structure is said to have one degree of freedom and is
also referred to as single degree of freedom system and abbreviated as SDOF system
(compare with MDOF, Multi Degree Of Freedom system). The mass-spring system in
Figure 4.5 is an example of a system with one degree of freedom.
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Figure 4.5  Mass-spring system with single degree of freedom, (SDOF).

The single degree of freedom system in Figure 4.5 represents a rigid mass, M,
attached to a spring. In a rigid body there is no relative displacement between
arbitrary points in the body. R is the internal force in the spring and C is the damping
of the system.

When a mechanical system is moved from its unloaded equilibrium position the
internal forces (for most materials) endeavour to bring it back to equilibrium position.
This behaviour causes oscillations.

If vibrations take place in the absence of external forces but in presence of internal
frictional forces the motion is referred to as damped free vibrations. If also the
frictional forces are assumed to be absent the motion is called an undamped free
vibration. If an external force is applied to the system the resulting motion is called
forced vibration. The oscillation behaviour depends on whether the system is damped
or undamped and if the vibrations are forced or not.

The undamped vibration is a hypothetical case but is, in many cases, assumed to be an
adequate approximation of the actual damped vibration experienced by real structures,
which always have more or less internal friction. In this report the behaviour of
damped systems are only briefly described since the influences of damping is
neglected in the following chapters.

4.2.2.1 Undamped free vibration

Consider a mass attached to a spring as illustrated in Figure 4.6 where the mass can
move only in the vertical direction and therefore has only one degree of freedom. The
unloaded equilibrium position for the system is noted as u, and is the static
equilibrium position when the dead weight is the only present load. u is the coordinate
describing the distance from the unloaded equilibrium position to the current position.
The mass M is attached to a spring with linear elastic behaviour with stiffness K. The
stiffness factor K is equal to the force required to move the system a distance. The
internal force R for a linear elastic system can be expressed as:

R=Ku (4.18)
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Figure 4.6  Mass undergoing undamped free vibration.

When the body is moved a distance u from the unloaded equilibrium position and then
released, the system will undergo an undamped free vibration about the unloaded
equilibrium position. The forces acting on the isolated body is shown in Figure 4.7
where Mg is the dead weight of the system.

Mg + Ku

Figure 4.7  Forces acting on the mass in Figure 4.6.
Due to dynamic equilibrium conditions the sum of the forces shall be zero.

Mg — (Mg + Ku)— Mii = 0 (4.19)
where u varies in time i.e. u=u(t).

By rearranging the terms in the equation above the differential equation of motion for
an undamped system with linear elastic behaviour is defined as:

Mii+Ku =0 (4.20)

Introducing the definition of the circular frequency w=,/K/M Equation (4.20) can
be written as:

i+ wu=0 4.21)
In a more general form the differential equation in Equation (4.20) can be written as:
Mii+R=0 (4.22)
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where the expression for the internal force R is depending on the material behaviour.

In expression (4.22) the internal force R is not necessarily given by a linear expression
(such as Equation (4.18)) and generally it holds that R#£Ku.

4.2.2.2 Undamped forced vibration

Still neglecting the frictional effects, consider again the system shown in Section
4.2.2.1. Now the system is subjected to an external dynamic load P(t) as shown in
Figure 4.8.

M

Ll ]

P(t)l u M
P(t)l

Figure 4.8  Mass undergoing undamped forced vibration.

The forces acting on the isolated body is shown in Figure 4.9.

Mg + Ku

1

i
Mgl

P() ¥

Figure 4.9  Forces acting on the mass in Figure 4.8.
Due to dynamic equilibrium conditions the sum of the forces shall be zero.
Mg + P(t) - (Mg + Ku) - Mii = 0 (4.23)
where the displacement u varies in time i.e. u=u(?).
By rearranging the terms in the equation above the differential equation of motion for

an undamped system with linear elastic behaviour subjected to a dynamic load is
defined as:
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Mii + Ku = P(t) (4.24)
In a more general form the differential equation can be written as:
Mii+R = P(t) (4.25)

where the expression for the internal force R is depending on the material behaviour,
and again it generally holds that R#Ku.

4.2.2.3 Damped free vibration

Using the same notations as in the case of undamped free vibrations (see Section
4.2.2.1) but also taking the damping into consideration the differential equation of
motion of a damped free system can be derived.

The system in Figure 4.10 where the damping of the system is noted as C is studied.

Figure 4.10 Mass undergoing damped free vibration.

When the body is moved a distance u from the unloaded equilibrium position and then
released the system will undergo a damped free vibration about the unloaded
equilibrium position. The forces acting on the isolated body is shown in Figure 4.11.

Cu
Mg + Ku

Wi

Mg

Figure 4.11 Forces acting on the mass in Figure 4.10.
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Due to dynamic equilibrium conditions the sum of the forces shall be zero.
Mg — (Mg + Ku) - Mii = Cii =0 (4.26)
where the displacement u varies in time i.e. u=u(?).

By rearranging the terms in the equation above the differential equation of motion for
a damped system with linear elastic behaviour is defined as:

Mii+Cu+Ku=0 (4.27)
In a more general form the differential equation can be written as:
Mii+Cu+R=0 (4.28)

where the expression for the internal force R is depending on the material behaviour,
and generally R#Ku.

4.2.2.4 Damped forced vibration

Again consider the damped mass-spring system in Section 4.2.2.3 but now subjected
to an external dynamic load P(z) as shown in Figure 4.12.

M
\ 4
P(t)i “1

M
P(t) i

Figure 4.12  Mass undergoing damped forced vibration.

The forces acting on the isolated body is shown in Figure 4.13.
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Figure 4.13 Forces acting on the mass in
Figure 4.12.
Due to dynamic equilibrium conditions the sum of the forces shall be zero:

Mg + P(t) — (Mg + Ku) - Mii = Cii =0 (4.29)
where the displacement u varies in time, i.e. u=u(?).
By rearranging the terms in the equation above the differential equation of motion for
a damped system with linear elastic behaviour subjected to a dynamic load is defined
as:

Mii + Cu + Ku = P(¢) (4.30)
In a more general form the differential equation can be written as:

Mii+Cii + R = P(¢) 4.31)

where the expression for the internal force R is depending on the material behaviour,
and generally R£Ku.

4.2.3 Beam vibrations

The eigenfrequencies for a structure are the frequencies for which the structure will
vibrate of its own accord when exposed to a perturbation. The shapes of the structure
for the different eigenfrequencies are called eigenmodes where each eigenmode is
related to one specific eigenfrequency.

Three different mode shapes, for a simply supported beam, are shown in Figure 4.14
where the first eigenmode corresponds to the lowest value of the eigenfrequency.
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7%\/ \/;}7 Third bending mode

Figure 4.14 Eigenmodes for simply supported beam.

Normally, when a beam is subjected to a dynamic load, the frequency will not
coincide with the eigenfrequencies and therefore the shape of deformation will not be
the same as any of the eigenmodes. However, the dominating shape of deformation is
the first eigenmode but it is influenced by higher modes. SDOF systems have only
one eigenmode and hence there are no influences from higher modes.
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5 Solution of equilibrium equations in dynamic
analysis

The equations of motion derived in Section 4.2.2.1 to 4.2.2.4 can mathematically be
solved by analytical procedures. However, these standard procedures, proposed for
solving general systems of differential equations, can be very expensive since heavy
equations and calculation are required. Therefore the use of more effective methods is
motivated even though they give approximate results.

In this report two solution procedures are used where both are special cases of the
Newmark method. The Newmark method is a direct integration solution method
where the equations of motion are integrated using a numerical step-by-step
procedure. By the term “direct” it is meant that no transformation of the equations into
a different form is carried out before the numerical integration.

For a large structure where it is hard to find a solution that holds for the entire region
the region is divided into smaller parts, so-called finite elements, for which the
approximated solution is carried out over each element. Even though the searched
variable is varying in a nonlinear manner over the entire region it may be a fair
approximation to assume that the variable varies linearly over each element.

The stability of the Newmark method depends on the parameters a and J, see
Section 5.1. The so called central difference method is, according to Bathe (1996), a
special case of Newmark. with a=0 and 6=0.5. The central difference method is a
conditionally stable method meaning that the time step increment 47 must be smaller
than a critical value of the time increment, A4¢.,, in order to generate a stable solution.
If the time step increment is larger than A¢., the solution is unstable.

The differential equation of motion for a damped body subjected to an external
dynamic load is the most general form of the equation of motion. For single degree of
freedom systems the equation of motion is shown in Equation (4.31). In order to
facilitate when using finite elements the differential equation can be written in matrix
and vector form.

MU+CU+R=P (5.1)

M, C and R are the notations for the matrices of mass, damping and internal force

respectively. P is the vector of externally applied loads and U, U and U are the
displacement, velocity and acceleration vectors respectively. When analysing a mass-
spring system with only one degree of freedom only one element is used. In the
following the displacement, velocity and acceleration vectors at time 0, denoted as

‘U, °U and °U, respectively, are assumed to be known.
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5.1 The Newmark method

In the Newmark method it is necessary to triangularize the stiffness matrix, see
Bathe (1996). Only the case of linear elastic behaviour is discussed here, since other
materials may give rather complex stiffness matrices to triangularize, however, the
principle is the same.

In the Newmark method the acceleration and displacement at time ¢#+4¢ are assumed
to be:

=0 + (- 6) U + 57 U] (5.2)
s = U+ UA +(L - a ) U+ ] (5.3)

where a and ¢ are parameters that can be determined to obtain integration accuracy
and stability. When setting 0=0.25 and 0=0.5 in the Newmark method you get,
according to Bathe (1996) the constant-average-acceleration method (or trapezoidal
rule), illustrated in Figure 5.1.

4 t+ At

Figure 5.1  Newmark method with a =0.25 and 0 =0.5.
In case of linear elastic material the internal force at time #+4¢ can be written as:
AR =K"MU (54
where K is the stiffness matrix.
By using Equation (5.4) the equation of motion in Equation (5.1) can be expressed as:
MU+CU+KU =P (5.5)
The equation of motion at time ¢+A4¢ is:
MU +C* U +K U= P (5.6)

By rearranging the terms in Equation (5.3) the acceleration at time #+4¢ can be
expressed as:

L () Lo (5.7)
alt alt 2a

t+0t U —
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By substituting Equation (5.7) into Equation (5.2) the expression for the velocity at
time 7+A4¢ are found. The relations for the acceleration and velocity at time ¢+4¢ are
used in the equation of motion (see Equation (5.6)) in order to solve for the
displacement at time ¢+A4tz. The complete algorithm for the Newmark method,
according to Bathe (1996) is given in Table 5.1 below.

Table 5.1 Algorithm for Newmark method when having linear elastic behaviour,
according to Bathe (1996).

A. Initial calculations:
a. Form stiffness matrix K, mass matrix M and damping matrix C.
b. [Initialize “U, °U and °U.

c. Select time step At and parameters @ and O to calculate integration

constants:
J2=0.50 a =0.25(0.5+9)>
 ai? Yoal > alt Y
o N[O
614:;_1 a5:7(5—2) aﬁzAt(l—é) a7:5At

d. Form effective stiffness matrix K .

K=K +a,M +a,C

B.  For each time step:

a. Calculate effective loads at time ¢ + Az .

A p=rtAp +M(a0’U +a,'U +a3’U)+C(a1’U +a,'U +a5’U)
b. Solve for displacements at time ¢ + A¢.

RHvy=+5p
c. Calculate accelerations and velocities at time ¢ + Az.

t+At]'j - aO(HAtU—tU)—aztﬁ _a3tl'j

t+AtU=tU+a6tU+a7[+AtU
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5.2 The central difference method

When a=0 and 0=0.5 are chosen the central difference method is obtained, according
to Bathe (1996). In the central difference method it is assumed that the acceleration
for time ¢ can be written as:

IU ZALtz(z—AzU_ZtU_FHAtU) (58)

The velocity expression is written as:

tU :%At(_t—AtU_i_HAtU) (59)

The displacement at time ¢+A4¢ is obtained by considering the equation of motion see
Equation (5.1) at time ¢, i.e.:

M'U+C'U+'R='P (5.10)
Since the equations are set up in a known state it is an explicit method.
By using Equations (5.8) and (5.9) Equation (5.10) can be written as:

1 1 2 1 1 )
—M+—C |"™U=P-'R+—M'U-|—M-—C|[™U 5.11
(At2 2A¢ j A [Aﬁ 2A¢ J (5-11)

The displacement at time /+4¢ can now be solved but the solving algorithm is slightly
different for different material responses.

In the very beginning of the calculations “U, U and °U are initialized but also the

value of U is required in order to calculate " U (see Equation(5.11)). The
displacement at time 0-At can be expresses by means of displacement, velocity and
acceleration at time 0. For sufficiently small A¢ the change of displacement during
the time At is:

2
"YU - A0 S (5.12)

In order to use less storage space and less processing time the consistent mass matrix
can be reduced to one with a more manageable size and structure. The preferable
structure is a diagonal matrix as shown in Equation (5.13), called a lumped (or
effective) mass matrix.

M, 0 . 0
0 M, . 0

M = (5.13)
0 0 . M

n
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Different methods can be used to transform the consistent mass matrix and obtain a
diagonal matrix, one of them is HRZ lumping. However this is not discussed here but

further information can be found in KTH (2006).

5.2.1 Linear elastic material

A material response curve linear elastic material can be seen in Figure 5.2.

v =<

umax
Figure 5.2 Material response curve for linear elastic material.
In case of linear elastic material the internal force at time ¢ can be written as:
'R=K'U
where K is the stiffness matrix see also Section 3.1.1.
Substituting Equation (5.14) into Equation (5.11) gives:

1 1 2

—M+—C["™U="P{K--——5M U~ LZM—LC My
Y; 20t Y, At 20t

Equation (5.15) can be written as:

MHA:U:tl")
Where
V = %M + LC
JAYS 20¢
and

‘P='P- K—%M ‘U- LZM—LC U
At At 20

The displacement at time ¢+4¢ is calculated by use of Equation (5.16) as:

t+AtU :M—ltf,

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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The time increment A¢f must be smaller than a critical value of the time increment, A¢..,,
which can be calculated from the mass and stiffness properties of the complete
element assemblage. For linear problems, this critical time step 4z, is:

2
A =2
= (5.20)

where wmax 1s the maximum eigenfrequency, bounded by the maximum frequency of
the individual finite elements.

Since M does not varies in time, for linear elastic material (see Equation (5.17)), it is
calculated only in the initial stage of the analysis together with the stiffness matrix K,
mass matrix M and damping matrix C (if not neglected). The values of the
displacement, velocity and acceleration at time 0, noted U, °U and °U
respectively, are also initialized in the initial stage and after selecting time step size

the displacement at time -A¢ are calculated by means of Equation (5.12). Since P
varies in time it has to be calculated for each time step in the analysis and for each
time the displacement is calculated by means of Equation (5.19).

The complete algorithm, according to Bathe (1996), for the central difference method
when having a linear elastic material is given in Table 5.2.
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Table 5.2 Algorithm for central difference method when having linear elastic
behaviour according to Bathe (1996).

A. Initial calculations:
a. Form stiffness matrix K, mass matrix M and damping matrix C.
b. Initialize U, *U and °U.
c. Select time step At (At <At¢,).

2
d. Calculate *U="U-A"U +%0 U

e. Form effective mass matrix M.

M = LZM +LC
At 2A¢

B. For each time step:

a. Calculate effective loads at time ¢.

‘P='P —(K —%th U —(LZM —Lcj"” U
AY; AY; 21t

b. Solve for displacements at time ¢ + Az .
M U=P

c. Ifrequired evaluate accelerations and velocities at time ¢.

tU — L(r—m U _21 U+1+AtU)

tU — _(_t—AtU+t+AtU)
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5.2.2 Ideal plastic material
A material response curve for ideal plastic material can be seen in Figure 5.3.

rt

m

u
>

Figure 5.3  Material response curve for ideal plastic material.

The internal force R equals to the maximum value R, if the external load is higher
than the maximum value of the internal force or if the displacement is larger than
zero. If the external load is lower than the maximum value of the internal force and
there are no displacements the internal force will be equal to the external load. (See
also Section 3.1.2).

‘R=R,, when ‘P2R, or ‘UZ0 (5.21)
‘R='P when 'P<R, ifalso ‘U=0 '

where R,, is the maximum value of the internal force and ‘P is the external load

matrix at time ¢.

The equation of motion in Equation (5.1) at time ¢ is then:

MU+C'U+R, =P when ‘P>2R, or ‘Uz0

.. ) . (5.22)
MU+C'U=0 when ‘P<R, ifalso 'U=0
Equation (5.11) can in case of ideal plastic material written as:
1 1 2 1 1 -
—M+—C|[™U="P'R+——-M'U~-|—M-—C|™U (523
(Atz 20t j At? (Atz 20t j (5-23)
Equation (5.23) can be written as:
MY U="P (5.24)
where
~ 1 1
M=—M+—C (5.25)
At 2A0¢
and
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. 2 1 1 _
’P:’P—’R+FM’U—(FM—2—NCJ’ U (5.26)

The displacement at time 7+4¢ is calculated by use of Equation (5.24).
AT = M—l t 13 (5.27)

In Equations (5.26) it is seen that as long as the external load is lower than the
maximum value of the internal force and the displacement and acceleration for time ¢

and 7-At respectively is zero there will be no motion since ‘P becomes zero giving
that "~ U, calculated as in Equation (5.27), becomes zero.

Since M does not varies in time for ideal plastic material, see Equation (5.25), it is
calculated only in the initial stage of the analysis together with the stiffness matrix K,
mass matrix M and damping matrix C (if not neglected). The values of the

displacement, velocity and acceleration at time =0, denoted ‘U, °U and °U
respectively, are also initialized in the initial stage and after selecting time step size
the displacement at time -A¢ are calculated by means of Equation (5.27). Since R
depends on the size of the load and the displacement it must be calculated for each

time step, see Equation (5.21). Also P varies in time and has to be calculated for each
time step in the analysis, see Equation (5.26) and the displacement at time ¢+A4¢ is
calculated by means of Equation (5.27).

The complete algorithm for the central difference method when having an ideal
plastic material is given in Table 5.3.
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Table 5.3 Algorithm for central difference method when having ideal plastic

behaviour.

A. Initial calculations:
a. Form mass matrix M and damping matrix C.
b. Initialize U, *U and °U.
c. Select time step At (At <At¢,).

2
d. Calculate *U="U-A"U +%0 U

e. Form effective mass matrix M.

M = LZM +LC
At 2A¢

B. For each time step:

a. Determine the matrix of internal force for time ¢.

‘R=R, when ‘P2R, or ‘UZ0
'R='P when 'P<R, ifalso ‘'U=0

b. Calculate effective loads at time ¢.

‘P='P-'R +iszU —(%M —Lcjf‘” U
At At 20

c. Solve for displacements at time ¢ + Az .

MHA;U:tl")

d. Ifrequired evaluate accelerations and velocities at time ¢.

tU — L(z—Az U _2tU+t+AtU)

tU — _(_l—AtU+t+AlU)
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6 Transformation from deformable body to SDOF
system

In order to simplify analyses of deformable bodies, which have an infinite number of
degrees of freedom, the system can be discretized to a system with a finite number of
elements and the degrees of freedom belonging to them. Beams and plates have, in
practice, a limited possibility to move. This makes it possible to transform the
structures to single degree of freedom systems here denoted as SDOF systems, see
Figure 6.1. This simplification introduces errors into the analyses. For example the
user assumes a shape of deflection valid for the SDOF system, in this report the shape
of deformation corresponding to the first eigenmode is assumed, while the shape of
deformation for beams are influenced by higher modes, see Section 4.2.3.

| g(x,1) ‘

| | e e
7 M,L,E1C,0, m \

Figure 6.1  Transformation from deformable body to SDOF system.

The properties of the deformable body will be transformed to the SDOF system by
assigning equivalent quantities for the mass, the internal force and the load applied to
a system point. The SDOF system is assumed to have the same function describing
the deflection in the system point. Since, in most cases, the maximum displacement is
to be calculated the location of the system point in the deformable body is chosen to
coincide with the point that achieves the larges displacement but it can be an arbitrary
point along the beam. One condition, for the transformation of the properties to be
possible, is that a uniform change of the deformation is assumed. That is if the
displacement in one point of the beam increases the displacements in all the other
points will increase proportional to this as illustrated in Figure 6.2. Another way to
express this is to say that the principle shape of deformation is assumed to be the
same, and hence be known at all times.
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u(x,ty) =ald(x,t) —
< Shape of

deformation at

System point time 7 =1,

Shape of
deformation at

u(x,t,) —u(x,t,) =(a - Du(x,z,) time ¢ =1,

Figure 6.2  Shape of deformation at time t, and t,.

The transformation of the properties for the real structure to the equivalent properties
for the SDOF system is made by use of transformation factors. The equivalent
quantities and the transformation factors are derived from the condition that the
energy exerted by the equivalent SDOF system must be equal to the energy exerted by
the beam, when exposed to a certain load. Hence, the transformation factors will
depend on the applied load and the deflection shape of the beam.

6.1 Differential equation for SDOF system
The differential equation for the SDOF system in Figure 6.1 is:
M +Cu, +R, =P(t) (6.1)

where M, is the equivalent mass, R, is the equivalent internal force and P.(?) is the
equivalent load applied which is varying with time. The damping, C,, of the system is
here chosen to be neglected since it has little influence on the value of the maximum
displacement which is of interest. Neglecting the influences of damping also involves
calculations that are easier to handle and gives results on the safe side because the
capacity of the system is underestimated. When neglecting the damping the
differential equation for the SDOF system in Equation (6.1) can be rewritten as:

M +R, =F,(1) (6.2)

The equivalent quantities for the mass, the internal force and the load can be
expressed by means of transformation factors.

K, Mi +K.R=K,P(t) (6.3)

Equation (6.2) and (6.3) gives the definition of the transformation factors.
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K = (6.4)
— Re
K= (6.5)
AV)
= p (6.6)

In order to simplify the expression of the differential equation further two new
transformation factors are defined.

K

K,y = ﬁ (6.7)
K

Kip = K_K (6.8)

P

By use of Equations (6.3), (6.7) and (6.8) the differential equation for the SDOF
system can be expressed as:

Ky pMii, + K, R = P(t) (6.9)

6.2 Transformation factors for beams

6.2.1 Transformation factor for the mass

The transformation factor for the mass can be derived from the condition that the
equivalent mass M., following the oscillation of the system point u,, shall generate the
same amount of kinetic energy as the real system.

The kinetic energy generated by the equivalent mass in the SDOF system is:

2
Mevs

wrPor = (6.10)
2
where v, = % is the velocity of the system point in vertical direction.
t
The kinetic energy for the beam is:
x=L V2
beam _
wpean = XL)? PAdx (6.11)
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where X coordinate with origin in one end of the beam [m]

A cross-section area [mz]
yo, density [kg/ m’]
v=v(x)= i—L; velocity of arbitrary point in vertical direction [m/s]

Due to the statement above Equation (6.10) shall be equal to Equation (6.11), i.e.:

MC’VSZ
2

x=L 2 x=L 2
v 1%
= ITpAdx o M, = [ = padx (6.12)
=0

x=0 "g
The change of the displacement in an arbitrary point in the beam can be expressed as:
Au =u(x,t)) —u(x,t) = au(x,t) —u(x,t,) = (a —Du(x,t) (6.13)

where u(x,t;) is the displacement at time ¢=¢,; at the distance x from one end of the
beam and u(x,?,) is the displacement at the same position in the longitudinal direction
of the beam at time #=¢,. Due to the constant shape of the beam deflection u(x,?,) can
be said to be a factor o times larger than u(x,¢;), see Figure 6.2.

This is also valid for the system point where the change of deformation when time
goes from #; to ¢, thus can be expressed as, see Figure 6.2:

Du, =u (t))—u (t,)=au(t,)—u(t)=(@—-Du.t) (6.14)

Since the assumption of uniform deformation is valid for all times, ¢z, Equations (6.13)
and (6.14) can be written in a more general form:

Au = (a —Du(x,t) (6.15)
DAu, =(a-Du, (1) (6.16)

The velocity of an arbitrary point in vertical direction and the velocity of the system
point in the same direction can be expressed as v=Au/At and vi=Auy/At respectively.
Using these expressions together with Equation (6.15) and (6.16), Equation (6.12) can
be written as:

I (@ =Du(x,0)) A :xJ‘L u(x,t)’ LGRS

6.17
(@-vuo) 77 L u o (6.17)

If the definition of the transformation factor x;, (see Equation (6.4)) is used and the
beam is assumed to have a uniformly distributed mass the expression for the
transformation factor for the mass can be written as:
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x=L 2
—j uen)) pax =1 [ | 12D 4 (6.18)
u (t) L2 u ()
i.e. the transformation factor for the mass is depending on the assumed shape of the
deformation.

6.2.2 Transformation factor for the load

The transformation factor for the load can be derived from the condition that the
equivalent load, following the oscillation of the system point, shall generate the same
amount of work as the total real load does in the real MDOF system.

The work generated by the equivalent load in the SDOF system during a time
increment A¢ is:

M%7 = P, (0u, (1) (6.19)

The corresponding work for the beam is:

x=L
Moen = j q(x, Ou(x,t)dx (6.20)
x=0
where X coordinate with origin at one end of the beam [m]
x=L
Jq(x, t)dx = P(t) total load on the beam [N]
x=0

Due to the statement above Equation (6.19) shall be equal to Equation (6.20)

x=L

P(u, ()= [qx,u(xndx = P(z)-j g(n0=

x=0

u(x, t)

(6.21)

The transformation factor for the load, see Equation (6.6), can now be written as:

XJ.Lu(x D q(x,t)dx

K, =20 ”j( ) (6.22)

Iq(x, t)dx

x=0

Also the transformation factor for the external load is depending on the assumed
shape of deformation. It is further depending on the shape of the load.

44 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



6.2.3 Transformation factor for internal force

The transformation factor for the internal force, following the oscillation of the system
point, can be derived from the condition that the equivalent internal force shall
perform a work that is equivalent to the work of deformation for the beam.

The internal force and the work it performs are depending on the behaviour of the
material. For the SDOF system this is shown in Figure 6.3, where the shaded areas
represent the total internal work for each material. R, is the maximum value of the
equivalent internal force. In case of linear elastic material the maximum internal force
is corresponding to R, =K. U max-

Re A Re Ar R
R me

me

Rme _____________ [}
’ A Ke

B
N

:

:________________

:____

23
Q
N

Z’[s,max us us S, s,pl
a) b) )

Figure 6.3  Internal work for SDOF system for a) Linear elastic material b) ideal
plastic material c) trilinear material.

The internal force for the SDOF system can be expressed for the three different types
of spring relations shown in Figure 6.3.

Linear elastic behaviour:

R, =K, u, (6.23)
where K, is the stiffness of the linear spring in the SDOF system.
Ideal plastic behaviour:

R, =R, for u(f)z0 (6.24)

Because of the ideal plastic behaviour there will be no displacement until the load,
P.(t), has reached the value of the maximal internal force, R,..

Trilinear behaviour:

K,u, for u,<u,
—_ ! —
R, =<Ku, , +K (u ~u_,) for wu,,<u <u,, (6.25)
R for u,, <u

me
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6.2.3.1 Linear elastic material

Following Samuelsson and Wiberg (1999) the work of deformation for the beam
made of linear elastic material can be derived by studying a lamella of length Ax and
the sectional forces, N, and deformations, An, belonging to it, see Figure 6.4.

Ax

Figure 6.4  Segment, with length Ax, of the beam.

The constitutive relationship between the sectional forces N and the deformations
An are:

. EA O 0 N An

=—|0 ny 0[An N=|V |, An=|As ,
A i (6.26)

0 0 EI M Am
where E modulus of elasticity [Pa]
A cross-section area [mz]

E
= shear modulus [Pa]
2(1+0)

U Poisson’s ratio [-]
Y constant, shape factor [-]
1 moment of inertia [m’]

The meanings of the deformations 4n, At and Am are shown in Figure 6.5.
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Figure 6.5  Deformation of beam lamella.

The constant f can be derived from the statement that the work of deformation due to
shear force shall be equal to the work of deformation due to shear stress.

Vy = VV_'B = Zj.hr(z)y(z)b(z)dz (6.27)
G4 '
where y= od average value of shear angle [-]
r shear stress [Pa]
b width of the cross-section [m]
h height of the cross-section [m]
y= r shear angle [-]
G g

For a certain time in the loading the sectional forces will increase from N to N +dN
and the deformations will increase from An to An + dAn . The change of the work of
deformation is defined as the change of the work during the change of deformation
dAn .

din; = NdAn + VdAt + MdAm (6.28)
where index s and i stands for segment and internal respectively.

When using Hooke’s law Equation (6.28) can be rewritten

an® = E4 n ann + G4 a cane + ZL o citm = N'dan (6.29)
Ax J/iNs Ax

In order to get the total work of deformation of the segment, Equation (6.29) will be
integrated over the deformation An .
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An At Am
n = | E4 pndbn+ | A prane+ [ EL pm dtvm =
An=0 Ax Ar=0 ﬁAX Am=0 Ax
o 1 (6.30)
=| EA(An)* +— (At)? + EI(Am)* | —
B 20x

Once again using Hooke’s law and integrating the work of deformation for the
segment over the length, L, of the beam will give the total work of deformation for the
beam.

x=L s x=L 2 2
beam — rli — N ﬁV " 1
Moo = Ide_ j TRy + M (x)u"(x) de (6.31)

x=0 x=0

If the influences from the normal- and shear forces are neglected the total work of
deformation for the beam can be written as:

s ;
Feam =2 j M (x)u"(x)dx (6.32)
x=0

Equilibrium position
a) M,
Position when the force in the spring is
b) M, R, larger than in equilibrium position
3

Figure 6.6  Mass in a) equilibrium position and b) moved ¢ from equilibrium
position.

Study the undamped SDOF system in Figure 6.6. The displacement ¢ causes an
internal work for the SDOF system which by use of Equation (6.23) can be written as:

E=u E=uy 2 2

’ : K K
I—IiSDOF: J‘Redgzj'Ke{df: Uy =K u,
£=0 £=0

> « (6.33)
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As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to
the total work of deformation of the beam, meaning that Equation (6.32) shall be
equal to Equation (6.33).

KKMSZ_lx
A )

I M (x)u" (x)dx (6.34)

The stiffness K of the beam is depending on the shape of the load and is determined
by:

x=

L
q(x,t)dx = Ku, (6.35)
0

x=

The definition of stiffness K of the beam according to Equation (6.35) together with
Equation (6.34) gives the final expression of the transformation factor for the internal
force when having a linear elastic material.

x=L

- j M (x)u"(x)dx
1 " 1 x=0
K =y [ MOou" (de == (6.36)
s x=0 s J‘q(x, t)dx
x=0

For high beams it might be necessary to include the influences from the shear forces
to get adequate results, see Section 6.2.4 for further discussion.

6.2.3.2 Ideal plastic material

As when deriving the work of deformation for the beam made of linear elastic
material a lamella of the ideal plastic beam with length 4x is studied. For ideal plastic
material the influence of the normal- and the shear force is neglected in the following
derivation of the transformation factor. For high beams the influence of shear will
cause the transformation factor to change noticeable.

Consider a situation when the moment, M, will increase to M+dM and the
deformation of the segment, Am will increase to Am+dAm. The increase of the work
of deformation is defined as the work achieved during the deformation dAm.

dn; = Mdhm (6.37)
where the moment M is constant within the segment.

In order to obtain the total work of deformation for the segment Equation (6.37) will
be integrated over the deformation Am.
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Am Am
= j MdAm = M jdAm = MAm (6.38)

Integration of the work of deformation for the segment over the length, L, of the beam
will give the total work of deformation for the beam.

[ ben = J—dx jM—dX— J‘LMu"(x)dx (6.39)
=0

The internal work for the SDOF system, when the spring has ideal plastic behaviour,
can be derived in the same way as for linear elastic behaviour (see Section 6.2.3.1).
For an ideal plastic material the internal force is constantly equal to R,. if the
displacement £ exists (see Equation (6.24)).

=uyg

R .[R dé =R, u, =K.Ru, (6.40)
£20

As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to

the total work of deformation of the beam, that is Equation (6.39) shall be equal to
Equation (6.40).

x=L

KeRu, = [ Mu"(x)dx (6.41)

x=0

This gives the final expression of the transformation factor for the internal force when
having an ideal plastic material.

17,
K :Kl OMu (x)dx (6.42)

The maximum value of the internal force is equal to the external load (since the
external load shall generate the same work of deformation as the internal resisting
force).

x=L
R, = [q(x,t)dx (6.43)
x=0
If Equation (6.43) is inserted in Equation (6.42) the transformation factor for the

internal resisting force in case of ideal plastic behaviour is expressed as:

x=L

J.Mu"(x)dx
K = j Mu"(x)dx —u—’;&— (6.44)
ms x=0 s .[q(x’ t)d.x
x=0
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6.2.3.3 Trilinear response material

The trilinear response curve in Figure 6.3.c can represent the response of a reinforced
concrete beam subjected to pure bending, see Chapter 12 for the application on
concrete material.

The derivation of the transformation factor for internal force and trilinear material is
rather complex. Due to the difficulties to derive the expression of the transformation
factor for a multilinear material it is here assumed to be convenient to use the
transformation factor for linear elastic material in the analyses of trilinear material.
The choice of transformation factor for the internal force for trilinear material is
further discussed in Chapter 8.

6.2.4 Tabled transformation factors for beams

The values of the transformation factors for mass, load and internal force for the
beams shown in Figure 6.7 are calculated in Appendix A to B and are shown in Table
6.1. The system point is placed in the middle of the beam for all cases except of
cantilever beams, when it is placed in the free end of the beam. When having linear
elastic material the natural shape of deformation, meaning the shape of deformation
according to theory of elasticity for a beam subjected to a static load, is assumed. In
case of ideal plastic material the mechanisms according to theory of plastic hinges is
assumed (see examples in Appendix B).

5 3 %
| L | L
1 1
Case (1.1) Case (1.2)
v v
L | L |
1 1
Case (2.1) Case (2.2)
b v |
L L |
1
Case (3.1) Case (3.2)

Figure 6.7  The six different cases.
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Table 6.1 Transformation factors for beams shown in Figure 6.7

Material | «, Ky Ky Kyp K cp

Elastic 1.0 0.486 1.0 0.486 1.0
Case (1.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.640 0.504 0.640 0.787 1.0
Case (1.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Elastic 1.0 0.371 1.0 0.371 1.0
Case (2.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.533 0.406 0.533 0.762 1.0
Case (2.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Elastic 1.0 0.236 1.0 0.236 1.0
Case (3.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.400 0.257 0.400 0.642 1.0
Case (3.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Granstrom (1958) and Balasz (1997) have used a different expression for the
transformation factor for the internal force, the relation with the transformation factor
used here are shown in Appendix C.

When taking the influences from shear into account the transformation factor depends
also on the shear modulus and consequently the Poisson's ratio v. In case of a fixed
concrete beam (v=0.15) with linear elastic material, subjected to a uniformly
distributed load and the length of the beam is ten times the height (L=10h) the
contribution from the shear to the transformation factor for internal force is 0.01
according to Wendt (2006). In Table 6.1 it is seen that in this case, when the influence
of shear is not taken to account, the transformation factor for the internal force is
0.533. The transformation factor for the internal force is thus 0.533+0.01=0.543 when
influences from shear are included. When the length of the beam is five times the
height (L=54) the contribution from the shear to the transformation factor for internal
force is 0.06 according to Wendt (2006) and the value of the transformation factor for
internal force is 0.533+0.06=0.593 when influences of shear are taken into account.
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7 Comparison of SDOF and FE analyses for beams

In order to verify the results of the analysis where the beam is represented by an
SDOF system, a comparison to the results in a finite element analysis (FE analysis) is
made. The FE analysis is here assumed to give results accurate enough to be equal to
the real behaviour of the beam.

Due to limitations in the SDOF analysis the influences of higher order modes are not
taken into account while it is in the FE analysis. When analysing a beam with trilinear
material response a difference between the SDOF and FE results is expected since the
transformation factors for linear elastic material is used in this case as discussed in
Section 4.2.3.

7.1 Typical examples

Comparisons are made for four different cases; simply supported beam subjected to
concentrated and uniformly distributed load respectively, and beam with fixed ends
subjected to concentrated and uniformly distributed load respectively. The different
cases are shown in Figure 7.1.

Each case will be analysed for linear elastic (1 analysis), ideal plastic (1 analysis) and
trilinear material (3 analyses) as described in Chapter 6. Further each case with each
material model will be analysed as a SDOF system as well as a MDOF system. This
summons up in 4 [({1+1+3)[2 =40 analyses. The MDOF system is analysed by use

of the commercial code ADINA (2004).

5 % %
| L=25m | L=25m
1 1
Case (1.1) Case (1.2)
v 1 v
L=25m | | L=25m |
1 1 1
Case (2.1) Case (2.2)

Figure 7.1  The four different cases.

The choice of material properties and geometry of the beam is based on the
requirements in the Swedish shelter regulations, Raddningsverket (2003), also
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discussed in Section 12.3. The geometry of the beam will be the same for all cases
with a length of 2.5 meters and a cross-section as shown in Figure 7.2.

h b=1.0m
h=0.35m

Figure 7.2 The cross-section of the beams used in the typical examples.

It is necessary to use material properties and loads that agree in both FE and SDOF
analyses in order to facilitate the comparison of the results from the different analyses.

The load applied is triangular in time, as shown in Figure 7.3. Where the total time for
the load is 1.0 ms and the maximum value of the load ( B), also called the peak value

of the load, is chosen to occur when 10% of the total time for the load has elapsed. In
reality the peak load occurs at time 0.0 ms but since this can cause numerical
problems the approximation described above is used.

4 load [kN]

av

[
>

0.1 1 time [ms]

Figure 7.3 Time function of the load.

The peak value of the load differs in the analyses. When having a trilinear material
three different analyses are made for each typical example. One for a load small
enough to stay in the elastic range, one for a load large enough to leave the elastic
range but still small enough not to reach the plastic range and one with a load large
enough to reach the plastic range, see Figure 7.4.
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Elastic range

Figure 7.4  The different ranges for a trilinear material.

In case of trilinear material the maximum load value when elastic behaviour is wanted
is chose to be P;=0.8P,,, when elastoplastic behaviour is wanted P;=0.8(R,,-P.,) and
for plastic behaviour P,=2R,. Table 7.1 shows the values of the peak load for the
different analyses. In case of uniformly distributed load the peak value of the load is
qi =P 1/L.

Table 7.1 Peak values for the loads applied to the beams.

Case (1.1) Case(1.2) Case (2.1) Case (2.2)
Material Peak load, Peak load, Peak load, Peak load,
B kN] | A[N] | A[KN] | B [kN]
Linear elastic 132 268 120 184
Ideal plastic 4810 9640 4220 8560
Elastic range 132 268 120 184
. Elastoplastic 1954 3920 1715 3467
Trilinear
range
Plastic range 4810 9640 4220 8560

In the SDOF analyses the total time for the analysis is set to 30 ms and 10000 time
steps are used which gives a constant time increment, A¢, equal to 0.003 ms. This time
step is also used in case of elastic material in the FE analyses. In case of ideal plastic
and trilinear material the time step is decreased since otherwise convergence
problems will occur in ADINA (2004), see Section 7.1.2. In these analyses a time step
increment of 0.0015 ms are used. The time increment of 0.003 ms in the SDOF
analyses for ideal plastic and trilinear material remains.
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When analysing a beam as a SDOF system with trilinear behaviour (for example a
reinforced concrete beam) the material properties are often given as the relation
between load and displacement while in the FE analyses the stress-stain relation is
required. How to obtain an approximate stress-strain relation from the load-
displacement curve for the beams in the typical examples are shown in Appendix D.
The corresponding notations when using a stress-strain relation and a load-
displacement relation are shown in Figure 7.5.

pl pl

cr cr

Figure 7.5  Notations for material properties for load-displacement relation and
stress-strain relation respectively.

It shall be observed that the modelled beams in ADINA (2004) will not vibrate as a
reinforced concrete beam since plastic deformations occur also in the elastoplastic
range while a reinforced concrete beam have elastic behaviour in both elastic and
elastoplastic range, see Section 3.1.3. The solution of the SDOF analyses are here
forced to have the same behaviour meaning that plastic deformations will occur as fast
as the elastoplastic range is entered. However, this will not influence the value of the
maximum deflection and are therefore application able on analyses of reinforced
concrete beams as long as the maximum value of the displacement is to be found.

7.1.1 SDOF analysis

Analyses of the SDOF system are made in OCTAVE using MATLAB programming
language, developed for this project that computes the displacement for each time step
for the three different types of material responses. The computations are made by
using the explicit central differential method, see Section 5.2. The material data
needed to perform the calculations for the different materials are calculated in
Appendix D and shown in Table 7.2 where the meaning of the notations can be seen
in Figure 7.5.
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Table 7.2 Material properties for SDOF analysis.

Material P, [kN] | P,[kN]| K'/K | o, [MPa] | E [GPa]
Linear elastic - - - - 38.6
Ideal plastic - - - 4.45 -
Case (1.1) 53.8 218.2
Case (1.2) 107.7 436.4
Trilinear 0.0774 | - 38.6
Case (2.1) 107.7 436.4
Case (2.2) 161.5 872.9

7.1.2 FE model

The program used for the FE analyses is the commercial code ADINA (2004) where
the solution method is Newmark with 0=0.5 and o=0.25. This method is also called
the trapezoid method or constant-average-acceleration method, see Section 5.1.

Different FE models are used for the different material responses. Due to limitations
in the ADINA (2004) program the elements used to model the beam will not be the
same for all cases. In the cases of elastic and ideal plastic material the beam is
modelled with 2-node beam elements as shown in Figure 7.6. When having elastic
material the beam is divided into twenty equally sized elements (see Appendix E).

Figure 7.6 Beam element with constant, rectangular cross-section.

In case of an ideal plastic material the beam is divided into parts modelled with ideal
plastic material and parts with linear elastic material in order to imitate the assumed
mechanisms. The elements with ideal plastic material are located where the assumed
plastic hinges are located, see Figure 3.13. The linear elastic part of the beam is
divided into 48 elements and the total number of ideal plastic elements differs due to
the different numbers of plastic hinges for different beams. In case of simply
supported beams the total length of the part modelled with linear elastic material is
2.45 m and in case of a beam fixed in both ends the total length of the elastic part is
2.4 m. For all beams the length of the ideal plastic elements are 2.5 cm. Constraints
are used in the nodes belonging to the elastic part of the beam in order to have no
curvature. The rotation of these nodes is constrained to be the same as in the node in
between the element with plastic material in the middle, in case of simply supported
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beam, and at the supports, in case of fixed beam, and the last elastic element. This is
done in order to imitate the assumed mechanisms even more. The beams in the ideal
plastic analyses are shown in Figure 7.7 and Figure 7.8.

24 linear elastic elements
e : Total length 1.225 m

2 ideal plastic elements
with length 2.5 cm each

Figure 7.7  Modelled beam (simply supported) for ideal plastic material.

24 linear elastic elements
Total length 1.2 m

2\; 1 ideal plastic 2 ideal plastic 1 ideal plastic
element with element with

elements with
length 2.5 cm length 2.5 cm each length 2.5 cm

Figure 7.8  Modelled beam (fixed in both ends) for ideal plastic material.

When having a trilinear material (modelled with multilinear material) the beam cannot
be modelled with beam elements in ADINA (2004). Instead 2-node isobeam elements
are used. The beam is divided in three hundred parts in the longitudinal direction in
case of uniformly distributed loads. In case of concentrated loads an odd number of
elements will be used in order to avoid an unrealistic deformation in the midzone. 299
elements are used in these cases (see Appendix E) and the middle element has
trilinear material behaviour while the other elements will have a material response as
shown in Figure 7.9, here called bilinear material behaviour, in order to avoid large
plastic deformations here. The length of the midpoint element is 2.5 cm, see Figure
7.10 and Figure 7.11.
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Figure 7.9  Bilinear material behaviour used in all elements except the midpoint
element in case of trilinear material and concentrated load.

149 elements with total length
of 1.2375 m and bilinear
material

1 element with
trilinear material
and length 2.5 cm

Figure 7.10 Modelled beam (simply supported) for trilinear material in case of
concentrated load.

149 linear elastic elements
e : Total length 1.225 m
2 E
\ 1 element with
trilinear material

and length 2.5 cm

Figure 7.11 Modelled beam (fixed in both ends) for trilinear material in case of
concentrated load.

The main difference between beam and isobeam elements is that beam elements have
2 nodes while isobeam eclements can have 2, 3 or 4 nodes where 3- and 4-node
isobeam elements can be used to define curved beams (see Figure 7.12). Even though
there are some calculation differences when using 2-noded isobeam elements instead
of beam elements the results will be very similar. For further information see
ADINA (2004). The material data used to perform the calculations for the different
materials are shown in Table 7.3.
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2-node isobeam -

3-node isobeam

4-node isobeam |2

Figure 7.12  General 3-D isobeam elements. From ADINA (2004).

Table 7.3 Material properties for FE analysis
Material E E' g, g, £, £,
(GPa] | [Gpay | MPal | [MPa] | [%o] [%o]
Linear elastic | 38.6 - - - - -
Ideal plastic 5000 - - 4.45 - -
Trilinear 38.6 2.99 1.65 4.45 0.043 0.98

1) In ADINA (2004) it is not possible to model an ideal plastic material but in order to imitate this
behaviour a bilinear plastic material is used where the modulus of elasticity in the elastic part is
chosen to be large enough to get accurate result. By testing it was found that a suitable value of
the modulus of elasticity was 5000 GPa see Appendix E.

2) The elements in the beam that are not connected to any assumed plastic hinge are modelled with
linear elastic material in order to avoid yielding in these elements.

7.2 Results

7.2.1 Linear elastic material

In the SDOF- and FE analyses with linear elastic material the input shown in Table
7.2 and Table 7.3 were used. The displacement-time relations from SDOF and FE
analyses for linear elastic material are compared in Figure 7.13.
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Figure 7.13 Displacement-time relations from analyses for linear elastic material.

As predicted there are influences from higher modes in the results from the FE
analyses. These are represented by a non smooth character of the curve. When
comparing the FE results for the different cases it can be observed that the higher
modes influence the beams subjected to a concentrated load more than they affect the
results for a beam subjected to a uniformly distributed load.

There is a good agreement between the curves representing the SDOF and FE
solution.

A phase shift between the results from the SDOF and FE analysis can be noticed in
case of concentrated load.

7.2.2 Ideal plastic material

In the SDOF- and FE analyses with ideal plastic material the input shown in Table 7.2
and Table 7.3 were used. The displacement-time relations from SDOF and FE
analyses for ideal plastic material are shown in Figure 7.14.
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Figure 7.14  Displacement-time relations from analyses for ideal plastic material.

The values of the maximum displacement from the SDOF analysis are lower than the
values from the FE analyses but the difference is rather small for all cases and the
SDOF results are acceptable approximations of the FE results. The lower value can be

may be explained by the fact that the same behaviour are not exactly the same in
SDOF and FEM.

7.2.3 Trilinear material

The results from the analyses when having a trilinear material are presented in this
section. Due to the change in behaviour for different loads three different values of
loads are used for each case see Table 7.1. In the SDOF- and FE analyses with
trilinear material the input shown in Table 7.2 and Table 7.3 are used.

7.2.3.1 Elastic range

For a load small enough all points in the beam will remain elastic meaning that the
beam will vibrate about the position of the unloaded beam. Since the only differences
between these analyses and the analyses for linear elastic material is that the beam is
modelled with isobeam elements instead of beam elements and that more elements are
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used (300 or 299 instead of 20) the results will be identical or nearly identical in those
cases see Section 7.2.1. The displacement-time relations from SDOF and FE analyses
for trilinear material, elastic range, are shown in Figure 7.15.
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Figure 7.15  Displacement-time relations from analyses for trilinear material,
elastic range.

The results are very similar to the results achieved in the analysis of linear elastic
material, see Section 7.2.1, but one difference worth attention is that the phase shifts
have increased for all cases. One difference between the two analyses that could be
the reason for this difference is that for the trilinear material isobeam elements are
used while beam elements are used for the linear elastic material. Also the element
mesh differs in the two analyses. In case of linear elastic material 20 elements are
used while 300 or 299 are used in case of trilinear material. With these exceptions the

comments are the same as for the results achieved in the analyses of linear elastic
material.

7.2.3.2 Elastoplastic range

For a load large enough to leave the linear elastic range but still small enough not to
reach the plastic range there will be plastic deformations of the beam leading to
oscillations about a value not identical to the unloaded position. The displacement-

time relations from SDOF and FE analyses for trilinear material, elastoplastic range,
are shown in Figure 7.16.
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Figure 7.16  Displacement-time relations from analyses for trilinear material,
elastoplatic range.

The SDOF analyses overestimate the maximum displacement of the system point for
all cases. A reason for the differences in value of the maximum displacement,
comparing the SDOF with the FE solution, is that the transformation factor for the
linear elastic material is used through the whole analyses instead of using
transformation factors especially derived for this kind of material, see Section 6.2.3.3.
Another reason, probably the most important, is that the relation between the load and
displacement is not exactly the same for the SDOF and FE analyses see Appendix D.

In the FE analyses there is a difference between the maximum displacements in the
first oscillation compared to the maximum displacements in the following oscillations.
This loss in maximal displacement is not represented in the SDOF analysis where all
the oscillations have the same maximal displacement.

7.2.3.3 Plastic range

For a load large enough to reach the plastic range there will be plastic deformations in
the beam, causing the beam to oscillate around a value not identical to the unloaded
position. The displacement-time relations from SDOF and FE analyses for trilinear
material, plastic range, are shown in Figure 7.17.
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Figure 7.17  Displacement-time relations from analyses for trilinear material,
plastic range.

As seen in Figure 7.17 the difference between the SDOF and FE analyses is rather
large for beams subjected to concentrated loads. Even though the FE models of the
beam in case (1.1) and (2.1) are made in order to avoid large and unrealistic midpoint
displacements in the very beginning of the analyses the fast load application probably
influences the FE results more than the SDOF results. In Figure 7.18 where the
standardized deflection along the beam from the FE analysis in case (1.1) and (2.1)
are shown together with the assumed shape of deformation in the SDOF analysis. The
two shapes of deformation (meaning SDOF and FE) are not the same which partly
explains the difference between results from the SDOF and FE analyses in case of
concentrated loads.
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Coordinate [m]
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b)

Figure 7.18 Standardized displacement along the beam in a) case (1.1) and b) case
(2.1) compared to the assumed shape of displacement in the SDOF
analyses.

The standardized shapes of deflection for case (1.2) and (2.2) are shown in
Appendix F.

In case of uniformly distributed loads the results agree more even though unrealistic
deflections appear at the supports in case (2.2). This behaviour can be explained by
the fact that the information is spread with delay inside the beam meaning that in the
very beginning of the loading the zones at the supports reaches high stresses before
the information has been transported to the rest of the beam (further discussed in
Section 12.1). This phenomenon is not taken into account in the SDOF analyses. A
more realistic value of the midpoint deformation can be estimated as shown below.

The deformation along the beam in case (2.2) is shown in Figure 7.19 where an
unrealistic deformation occurring at the supports can be seen. These appear in the
very beginning of the analysis and affects values of the midpoint deflection. A more
realistic value of the displacements at the supports from the FE analysis is shown in
Figure 7.20. In Figure 7.21 the more realistic midpoint displacement is shown
together with the SDOF result and the unrealistic FE result.

Coordinate [m]
0 0,5 1 1,5 2 2,5
| |

Displacement [mm]
wn

|
|
6 \
|
|

Figure 7.19 Displacement along the beam in case (2.2).
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Figure 7.20  Estimated displacement for the beam in case (2.2)
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Figure 7.21 More realistic displacement for the beam in case (2.2) compared to the
SDOF result.
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8 Comments to and discussion about Chapter 7

8.1 Transformation factors for trilinear material

In the analyses made in Chapter 7 the linear elastic transformation factors are used
when analysing SDOF systems with trilinear material since the derivation of the
transformation factor for internal force and trilinear material is rather complex. The
choice of transformation factors in case of trilinear material is discussed here.

Different approximations and simplifications can be used in order to facilitate
dynamic analyses of trilinear materials. Two approximation methods, convenient to
use in many cases according to Norris (1959), is discussed here.

8.1.1 Sudden change of transformation factors

Norris (1959) declares that, even though a sudden change of transformation factors is
unrealistic when analysing an elastoplastic material, it is often assumed to be
convenient to use this approximation for purposes of analysis. This means that it is
assumed to be convenient to use the transformation factor for linear elastic material in
the elastic range and the transformation factor for plastic case in the plastic range.
When this statement is applied on trilinear material also the elastoplastic range has to
be considered.

In the elastoplastic range the transformation factor can be derived in the same way as
in the case of linear elastic and ideal plastic material. However, this is not done here
since the expression will depend on the value of the internal force where there is a
drastic change of material behaviour. In order to avoid these complex expressions it is
assumed to be suitable to use transformation factor for linear elastic materials in the
elastic range, an average value of the elastic and plastic transformation factor in the
elastoplastic range and transformation factor for ideal plastic materials in plastic
range.

el + pl
e =K 2K 2K 8.1)

where 7!, k¥ and ¥’ are the transformation factors in the elastoplastic, elastic and
plastic range respectively.

In case of trilinear material the differential equation in the different ranges is:

In the elastic range
Mii+Ku=P (8.2)
In the elastoplastic range

Mel;i + Keucr + KZ’ (u _ucr) = })e (8.3)
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In the plastic range

Meii + Rme = Pe (84)

By use of transformation factors Equations (8.2) to (8.4) can be written as:

In the elastic range

KelM-- + el — el (85)
wMii+ Ky Ku=k, P

In the elastoplastic range

K M i + P! oo — elpl (8.6)
o Mii+ Ky (Kucr +K'(u ucr))—l(,, P

In the plastic range

k! Mii+k!R, =k!'P (8.7)

or

In the elastic range

Kel M + el — (88)
M+ Ky, Ku = P

In the elastoplastic range

K i+ 5! (Ku, +K'(u=u,,)) = P (89

In the plastic range

kP Mii+k2,R, =P (8.10)

In case of a fixed beam subjected to a uniformly distributed load the transformation

factors in Equations (8.8) and (8.10), shown in Table 6.1 ,are:

Ko, =0.762
ke, =1.0
(8.11)
kb, =2/3
kP, =1.0

and the transformation factors in the elastoplastic range, calculated by means of
Equation (8.1) are:

+
P 0.762 . 0.667 _ 0.714 .

K =1.0

The transformation factor xxp equals 1.0 in all ranges why only the value of the
equivalent mass will change. Since the value of xyp decreases when a new range is
entered it can be compared with taking away or losing mass. This means that when
using this method, where a sudden change of the transformation factors is allowed, the
energy will be drastically decreased when a new range is entered. This is graphically
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shown in Figure 8.1 where the energy of the SDOF system is studied when analysing
the beam in Section 12.4. The total energy used by the SDOF system will be lower
than the total energy applied to the system which is not realistic and will result in
underestimated value of the final displacement.

16
14 A
Total energy applied

12 4 to the system
g J \ Total energy used by
E 10 ] the SDOF system
% 8- Potential energy
o
-]
=
|6 AN Kinetic energy

4 -

2 .

0 T

0 5 10 15 20

Deformation [mm]

Figure 8.1  Energy, applied and internal, for SDOF system analysed by use of
different transformation factors in different ranges.

This is easily seen by studying areas representing the total internal energy when the
maximum displacement is reached, see Figure 8.2. When the maximum displacement
is reached the total internal energy equals the maximum potential energy R-uqx. Since
the internal resisting force is equal in the two cases, if it is assumed that the ideal
plastic range is reached, the maximum displacement in u,,,. > case 2 must be larger
than the maximum displacement u,,,,,; in case 1.

/’ Energy loss

\ \
Total applied energy \ Total internal \ Total internal
energy R [ energy R [

max,1 max,2

Case 1 Case 2

Figure 8.2  Total internal energy in case 1, where energy is lost due to change of
transformation factors, and case 2 where no energy is lost.

In order to compensate the loss of mass, and hence energy, when entering a new range
the value of the acceleration can be increased in this point. This is here only shown
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when going from the elastic range to the elastoplastic range but the same method is
used when going from the elastoplastic to the plastic range.

Just before the elastoplastic range is entered the displacement is u. and the
differential equation is:

Ko Mii, +Kk{,Ku, =P (8.13)

The displacement when the elastoplastic range is entered is u. and the differential
equation is:

K Mii + kP Ku,, =P (8.14)

The transformation factor xxp is equal to 1.0 and in order to keep the energy constant
in this specific point Equation (8.15) must be fulfilled.

KM Mii, = K, Mii, (8.15)
giving:
el
. Kyp ..o
i, =—ri, (8.16)
KMP

However, this is not done in the analyses discussed in this report. Instead constant
values of the transformation factors are used trough the analyses giving no energy
loss.

8.1.2 Constant transformation factors

Norris (1959) also states that, since the difference between the transformation factors
in case of linear elastic and ideal plastic material is not great it is often permissible to
use an average value of the transformation factors throughout the elastoplastic
dynamic analysis.

This can be assumed to be valid also for trilinear material where the transformation
factors thus are calculated as shown in Equation (8.1). However, it can be discussed if
this is the best value to use in the analyses. The energy required to get motions of the
system depends, among other quantities, on the mass. More energy is required to get
motion of a heavy body than for a less heavy body. Since the equivalent mass
becomes smaller when an average value of the transformation factors is used less
energy will be consumed when starting the motion. This is here assumed to influence
the results so much that it motivates to use the transformation factor for linear elastic
material in the analyses. In the analyses made in Chapter 7 the applied transient load
is active only in the elastic range which motivates the choice even more.
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8.2 Discussion about FE models used in analyses

In Chapter 7 the time-displacement curve calculated by use of the simplified method
of transforming beams into SDOF systems is compared with results from finite
element analyses. This is made in order to verify the SDOF method. Even though
there is not full agreement between the results the SDOF method is assumed to be
results that are accurate enough. In these FE analyses the beams are modelled so that
yielding will only occur in the points where the plastic hinges are assumed to form.
However, in the reality, the zones with yielding are larger than just a point why this
way of modelling the beams can be questioned.

If the simply supported beam subjected to a concentrated load, case(1.1), are modelled
in the same way as in Section 7.1.2 but this time all elements have trilinear material
behaviour the maximum midpoint displacement are almost twice the value achieved
with the FE model used in the FE analyses in Chapter 7, see Figure 8.3.

— =SDOF ——FEM, as modelled in Chapter 7 — = FEM, all elements have trilinear material
35
- e S e —— -
30 -
7
_ 25 i
E Ve
20 =4
P _/—\_’_/’
£ J
P
g 15 == — R = —
g | / -~
B4 -~
a 10 .l P
e
! / s
519 7
] 7
Ve
0 T T T

0 5 10 15 20 25 30

Time [ms]

Figure 8.3  Time-displacement relation for case(1.1) from FE analyses where two
different types of FE models are and the time-displacement curve from
SDOF analyses.

The increased value of the maximum midpoint deflection can be explained by the fact
that also elements around the midelement will reach the plastic range and will
therefore achieve larger deformations. This is hence not a problem in case of linear
elastic material or if the plastic range is not reached in case of trilinear material. The
comparisons made in Chapter 7, when having plastic effects, can therefore be said to
verify that the method of transforming deformable bodies into SDOF systems is rather
well corresponding to the idealized reality rather than the “real” reality. This means
that rather the assumptions made for plastic effects made in the SDOF analyses than
the method it self shall be questioned.

This effect does not appear in case of uniformly distributed loads even though the
plastic range is reached.
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9 Pressure and impulse load acting on SDOF system

In this chapter the concepts of pressure and impulse load are shown and discussed. Let
the loads act on a SDOF system, as shown in Figure 9.1, where damping is neglected.
The SDOF system is assumed to be in equilibrium position (no movement) before the
loading starts.

1

Figure 9.1  SDOF system with mass M , load P and internal force R .

In the case of pressure load the load will reach the maximum value instantaneously
and keep this value for unlimited time. The impulse load increases and decreases
instantaneously and the duration of time the load is applied is infinitely small. The
small duration of the load time is compensated by a very high value of the load.
Figure 9.2 illustrates the principals of the two extreme cases.

P(1) P(2)

Figure 9.2 Characteristic pressure and impulse load respectively.

9.1 Pressure load

If a pressure load is acting on the system in Figure 9.1 the mass will move in the same
direction as the load if the load is larger than the internal force. The system will
accelerate as long as the value of the load is higher than the value of the internal force.
Once the internal force equals the load the acceleration will stop and the system will
achieve the maximum value of velocity. When the value of the internal force is higher
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than the value of the load the retardation of the system starts. The maximum
displacement is reached as the work performed by the external load equals the work
carried out by the internal force, and the velocity then becomes zero. This course of
events is shown in Figure 9.3.

P,R

P =R Internal work

AN

External work

N U
. 7
Retardation of 4,
| |, system
Vl‘
Acceleration

of the system

Figure 9.3 Internal and external work for SDOF system subjected to pressure load.

The expressions for external and internal work are used when deriving the maximum
value of the characteristic pressure load, P,, that the system can stand for an allowed
maximum displacement #p,,x. The maximum external and internal works are shown
graphically as the areas in Figure 9.3 and the expressions for these areas are:

U=t pax

rl internal = I R(u)du (9 1)
u=0
I_I external ,P = Pcumax (92)

As the maximum displacement is reached, and the velocity becomes zero, the internal
work equals the external work, meaning that Equation (9.1) equals (9.2). Using this
relation and rearranging the terms the expression for the maximum load that the
system can stand for a given value of the allowed maximum displacement is:

u :ummx

jR(u)du
p = _ux0

c

(9.3)

u max

Hence, if a maximum displacement, umay, 1s allowed a maximum value of the pressure
load according to Equation (9.3) is allowed.
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9.2 Impulse load

For a characteristic impulse load, /., the system, with a mass M, obtains an
instantaneous and maximum velocity. The expression of the velocity can be derived
by using the second law of Newton that normally is expressed as:

P=M"l4 9.4)
where P external load [N]
M mass [ke]
a acceleration [m/s?]

The acceleration can then be expressed (by rearranging the terms in Equation (9.4))
as:

a=— (9.5)

By definition the acceleration is the first derivate of the velocity with respect to time
and can be written as:

_dv(

o= (=) (9.6)

Using Equations (9.5) and (9.6) gives:

dv _ P ¢t P()
—=— = v=|—=dt 9.7
Y / 07
The mass is constant and the velocity can thus be expressed as:
1 t
v=—2|P(t)dt 9.8
- j (1) ©.8)

The impulse is represented by the area under the load curve as shown in Figure 9.4
and is by definition:

I = jP(z)dt (9.9)
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P(t)
N

— I = jP(t)dt

<!
rd

Figure 9.4  Characteristic impulse.

Since the load duration of a characteristic load is infinity short the instantaneous
velocity can be expressed by means of Equations (9.8) and (9.9).

,=Le (9.10)

The characteristic impulse load is an idealized load not represented in the reality even
though general impulse loads can resemble it. For these general impulse loads, where
the load duration is not infinity short, the instantaneous velocity and hence the
acceleration will depend also on the load-time relation.

After removal of the load, due to the internal resistance, the velocity decreases. When
the velocity, and consequently the kinetic energy, becomes zero the maximum
displacement, and consequently the maximum internal work, is reached. Initially,
when the displacement of the system is zero and thus the potential energy is zero, the
external work has a maximum value. So, all kinetic energy becomes potential energy
when the maximum displacement is reached. The expressions for the maximum
internal and external work are:

U=l pax

rlinternul = .[R(u)du (911)
u=0
2
1
M| —<

M (Mj 1’ 9.12)

rlexternal,[ - - -
2 2 2M

For the maximum displacement Equation (9.11) equals Equation (9.12). Rearranging
the terms gives the expression for the maximum value of the impulse load that the
system can carry.

c

I = \/2MT}X2(u)duW (9.13)

u=0

So, if a maximum displacement, unyay, is allowed a maximum value of the impulse
load according to Equation (9.13) is allowed.
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9.3 Determination of capacity for beams transformed to
SDOF systems

When determining the capacity for a beam transformed to a SDOF system
Equations (9.3) and (9.13) are used but with equivalent values as described in
Section 6.1. Equations (9.3) and (9.13) expressed with equivalent internal force R,
equivalent mass M,, equivalent pressure load P. and equivalent impulse load /.
become:

j R, (u)du
p = _u=0 (9.14)
“ umax
I, = \/2 [ R, (uw)du M, (9.15)
u=0
where
P, =K,P, (9.16)
I, =K1, (9.17)
R, =kR (9.18)
M,=k, M (9.19)
and M is the total mass of the beam.
Equations (9.16) to (9.19) inserted in Equations (9.14) and (9.15) gives:
j R(u)du
u=0 (9.20)
ch = KKP
u]TlaX
I = \/ZKKP | Ry T M 9.21)
u=0

where as before K, =k /K, and K, =K, /K, .

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 77



9.3.1 Linear elastic material

For a linear elastic material the internal force, R, varies linearly with the displacement,
u, as shown in Figure 9.5 and is expressed as:

R=Ku
R =Ku_. (9.22)
R

/ |k

u

max

»
Tu

Figure 9.5  Internal force for linear elastic material.

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in
Figure 9.5:

2

u:umax K
| RGuydu = MT (9.23)

u=0

By use of Equations (9.20), (9.21) and (9.23) the expressions for the pressure load and
impulse load that the system can endure for a certain value of the allowed maximum
displacement can be written as:

—_ Kumax —_ Kumax —_ Rm
P =Ky =Kgp 9 _KKPT (9.24)

Kty M PP
I, :\/2KKP 2 KyupM =K pKyp ?Rmz = KKPKMPZ (©.25)

where w=,/K/M is the circular frequency of the SDOF system.

In Figure 9.5 it can be seen that in case of linear elastic material the maximum
displacement, umax, can be expressed as:

y =R (9.26)
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Rearranging the terms in Equations (9.24) and (9.25) and using Equation (9.26) gives
the expressions for the maximum displacement, umax, With respect to the pressure load
and impulse load respectively.

R (P) 2P
u P - m C - C
max (£.) P KK (9.27)
—_ Rm (Ic) — IC \/K/M /\/KKPKMP —_ 1 Ic
Upex (1) = = = (9.28)
K K KKPKMP Mw

9.3.2 Ideal plastic material

For an ideal plastic material the internal force, R, is constantly equal to the maximum
internal force, R,,, when the displacement, u, is nonzero, as shown in Figure 9.6.

Figure 9.6  Internal force for ideal plastic material.

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in
Figure 9.6:

U=Umax

[R@)du = R,u,, (9.29)
u=0

By use of Equations (9.20), (9.21) and (9.29) the expressions for the pressure load and
impulse load that the system can stand for a certain value of the allowed maximum
displacement can be written as:

R u
P =Ky ——"=KR, (9.30)

max

I, = 2K R o KoM = K oK o 2R o M (9.31)

In case of ideal plastic material the maximum displacement, ., cannot be expressed
with respect to the pressure load as in case of linear elastic material. However, by
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using Equation (9.31) the maximum displacement, u.x, can be expressed with respect
to the impulse load.

I°
Up (1) = ‘ (9.32)
KKPKMP 2RmM

9.3.3 Summary of capacity for beams transformed to SDOF systems
The capacity of an equivalent SDOF system subjected to pressure and impulse load
are determined for linear elastic material and ideal plastic material respectively. For a

general shape of the deflection the beam equations are shown in Table 9.1.

Table 9.1 General beam equations.

I. Linear elastic material

Rln
P =K, (a)

R
I, =\ KpKyp —/K;—lM (b)

1 2P
umax (F)L) =— -
Kep K

. 1,
umaX(IC)_mW (d)

I1. Ideal plastic material

F)c = KKPRm (e)

]c = \/KKPKMP \/2RmumaxM (f)
1 1}

Unay (1) = (2)

B KKP KMP 2Rm M

In Appendix G the expressions in Table 9.1 are developed for a simply supported
beam as well as for a beam fixed in both ends subjected to a concentrated and
uniformly distributed load.
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9.4 Capacity for SDOF systems

The equations in Table 9.1 can be written in a general form for a SDOF system by
letting the equivalent values of the quantities be equal to the actual values.

M,=M (9.33)
R, =R (9.34)
P=P (9.35)

Meaning that the transformation factors x in Table 9.1 shall be 1.0 (compare to
Equations (9.16) to (9.19)). The general equations for SDOF systems are shown in
Table 9.2.

Table 9.2 General equations for SDOF system

I. Linear elastic material

R Ku
pPp=—11=__ a
== (@)
R
1. = = b
K/M ®)
2P
u_(P)=——= I
max (F2) X (c)
(1) = @
Unax L) =
N KM
I1. Ideal plastic material
F, =R, (e)
IC = 2RmumaxM (D
] 2
u_ (I )=——=
max( C) 2R M (g)

m

The relation between the pressure load P. and the impulse load /. can be expressed for
the different materials. In case of linear elastic material the fact that the maximum
displacement u,y shall be equal for the two loads can be used.
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Upax (P.) = U (1) (9.36)

Using (c) and (d) in Table 9.2 and using the circular frequency of vibration w the
relation between P, and /. in the linear elastic case can be expressed.

w= % where K is the stiffness and M is the mass (9.37)
7 2

P=I— < [ =P — (9.38)
2 w

In case of ideal plastic material the pressure load P. must be equal to the maximum
value of the internal force R,, if the system shall move. Using Equations (e) and (f) in
Table 9.2 gives the relation between P, and /. for ideal plastic material.

12
I.=\2Pu, M - P =— (9.39)

Where Umax: umax(lc)-
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10 Equivalent static load

In order to simplify the analysis of a structure subjected to an impulse load the load
can be transformed to a static equivalent load. This means a static load chosen in such
a way that it will result in the same maximum displacement as the impulse load.

As discussed in Section 9.2 the total energy, kinetic energy plus potential energy, for
an undamped structure subjected to a dynamic load is constant. If the velocity
(consequently also the kinetic energy) is zero the potential energy, as well as the
displacement, has a maximum value. Even though it takes a while before the
maximum velocity is reached when a dynamic load is applied it can be assumed that
the maximum value of the kinetic energy occurs when the displacement is zero. This
is at least a good approximation for a hard, short impulse loads. Hence, the maximum
value of the kinetic energy equals the maximal value of the potential energy. In case
of a static load there is only potential energy (no kinetic energy).

Due to the condition that the displacement in case of a static load must equal the
maximum displacement for the dynamic load the potential energy in the static case
must equal the maximum potential energy for the dynamic load. Using this statement
together with the statement made above gives:

Potential energy for static case = Maximum kinetic energy for dynamic case (10.1)

From this statement the expression of the equivalent static load P*** can be defined
with respect to the characteristic impulse load /..

10.1 SDOF system

An SDOF system subjected to an impulse load will achieve vibrations and the
instantaneous velocity, caused by a characteristic impulse load, derived in Section 9.2,
is for a load, regarded as an impulse load, written as:

y=— (10.2)

(10.3)

M M(I1Y _I?

M 2M
By means of the equations above the external work (the work due to the impulse) can
be expressed as the difference in kinetic energy from time to time.

— 122 _112

external, I — 2M (1 04)
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The maximum external work equals the maximum kinetic energy since the system is
at rest before the load is applied, v; = 0 and v, = v = v,,,, and therefore has no initial
kinetic energy:

12
rlextemal,[ = 2M :{]2 =1} = 2M (105)

The increase of work, dll of the external static load causing a differential

tatic
external ,P*"¢ ?

displacement du, for a system subjected to the static load P**“ can be expressed as:

— static
external , P =P Ll (106)

By integrating Equation (10.6) over the total displacement the total work of the
external static load is achieved.

u=u

— J‘Psmztcdu (10'7)

u=0

external , P*'""™

The expression for the total work of the load will be different for different materials.

10.1.1 Linear elastic material

In case of linear elastic material the static external load, P, can be expressed by
use of the stiffness, K, and the displacement u from the unloaded equilibrium position.

Pstatic' :K l]l (108)

Equations (10.7) and (10.8) give the total work of the external static load as:

u=u u=u Ku2
— static — —
o preic = | P = [ Ku Gl = (10.9)
u=0 u=0

The total work of the external static load in Equation (10.9) shall be equal to the work
of motion caused by the impulse load in Equation (10.5).

R G ) Y o
2 oM K M

(10.10)

The static load equivalent to the impulse load acting on a SDOF system, with linear
elastic behaviour, can now be expressed as:

static — K —_
plae —‘/ﬁl—cd (10.11)

where w is the circular frequency of the SDOF system.
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10.1.2 Ideal plastic material

In case of a SDOF system with ideal plastic behaviour subjected to a constant load
P the displacement will go from 0 to u and the total external work can be
expressed by use of Equation (10.7).

u=u

exmﬁnal’Psmm - J.Pstaticdu - Pstatic m{ (1012)

u=0

The total work of the external static load in Equation (10.12) shall be equal to the
work of motion, caused by the impulse load in Equation (10.5).

]2

2M

Pstatic' l]l — (1013)

The static load equivalent to the impulse load acting on a SDOF system, with ideal
plastic behaviour, can now be expressed as:

2
static — I

spor = Sy (10.14)

10.2 Beams

For beams the method of transforming the beams into SDOF systems shown in
Chapter 6 is used. The expressions for the equivalent static load for beams are derived
in the same manner as for the SDOF system (see Sections 10.1.1 and 10.1.2) but
equivalent values of the mass, M, the internal force, R, and the external load, P, are
used. The equivalent values of the mass, stiffness and external load are noted as M.,
R, and P, and are in Chapter 6 defined as:

Me =KMMbeam (1015)
Re :KKRbmm (1016)
f)e = KPf)bmm (1017)

The transformation factors, x, have different values depending on material and
assumed shape of deformation and are shown in Table 6.1 for linear elastic and ideal
plastic material.

The internal stiffness of the beam, K., can be expressed as:

R
ban =075 [a(x.)dx (10.18)

x=0
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If the uniformly distributed load g(x,#) is varying in time the distributed impulse, i
[Ns/m], can be expressed as:

t=t,

i= j q(x,0)dt (10.19)

=t

The total impulse acting on the beam is:

I = x_:rl dx = X':[U]fzq(x, t)dt dx (10.20)
x=0 x=0 1=,

10.2.1 Linear elastic material

In case of linear elastic material the equivalent static load, to a general impulse load,
acting on a SDOF system is determined by inserting Equations (10.15) to (10.17) and
(10.20) into Equation (10.11).

. _ [k KK KiKyen . TT
ptatic — eJ = K™ beam o 5 = [ K" “beam . X, t dt dx 10.21
o \/M ‘ \/KMM TNk M, " J Jao (o

e

beam beam x=0t=t, )

where transformation factors for linear elastic behaviour shall be used.

The beam capacity can also be analysed by using an, to the general impulse load,
equivalent static load directly on the beam. If this equivalent static load is a
concentrated load acting in the system point the expression is:

_ P static K. K x=L 1=l
Pstatzc — 2 SDOF — K> beam x,t dt dx 10.22
beam KP KM Mb J- J- q( ) ( . )

eam x=0 t=t,

If the equivalent static load is a uniformly distributed load acting on the beam the
expression is:

x=Lt=t,

1 kK,
— e x,0)dt dx .
kK,L L\Kk,M, -[ jq( ) (10.23)

static
static — * beam
beam

eam  x=0 t=t,

If the impulse load is a concentrated load the impulse can be written as:

I= :[ZP(t) dt (10.24)

=t

and Equations (10.22) can be expressed as:
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e Pstutic K. K 1=t
e = SO = |~ bean [ p(r) dy (10.25)
KP KMMbeam t=t,

If the impulse load is a uniformly distributed load the impulse can be written as:

t=t,

I=L j q(t)dt (10.26)

t=t,

and Equations (10.23) can be expressed as:
static — KK Kbeam s
qbeam - q(t) dt (1027)
KM Mbeam t;[l

10.2.2 Ideal plastic material

In case of ideal plastic material the equivalent static load, to a general impulse load,
acting on a SDOF system is determined by inserting Equations (10.15), (10.17) and
(10.20) into Equation (10.14).

oM, 2Kk, M &

max

2
) b 2 x=L1=t,
pulaic = e ! (KPI [ax.0)ar de (10.28)

x=0 t=t,
where transformation factors for ideal plastic behaviour shall be used.

The beam capacity can also be analysed by using an, to the general impulse load,
equivalent static load directly on the beam. If this equivalent static load is a
concentrated load acting in the system point the expression is:

Pstutic K x=Lt=ty g
prte = fOF = MPm j j q(x,0)dt dx (10.29)
P M max \ x=0t=t,

If the equivalent static load is a uniformly distributed load acting on the beam the
expression is:

2
A f)bstatic 1 KP x=L1=l
static — eam  — x’t dt dx 1030

Qbeam KPL L 2KMM D{max (x_:[o t;[IQ( ) J ( )

If the impulse load is a concentrated load the impulse can be written as:

t=t,

I= jp(z)dz (10.31)

=t
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and Equation (10.30) can be expressed as:

_ 2
A K t=t,
ple =——L | | P(t)dt 10.32
beam ZKMM mmax [t;[l ( ) ] ( )

If the impulse load is a uniformly distributed load the impulse can be written as:

t=t,

I=L jq(t)dt (10.33)
t=t,
and Equation (10.31) can be expressed as:

_ 2
tatic KP H’ t_tz
R — 1) dt 10.34
q})mm ZKMM mmax [ IQ( ) J ( )

=t
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11 Damage curves

In Section 6.2.3 the relation between deformation and load are shown for the extreme
load duration cases that is obtained when the system is subjected to a characteristic
pressure and impulse load, respectively. In order to calculate this relation for a general
load, as schematically shown in Figure 11.1 so called damage curves can be used.

P()

Figure 11.1 General load-time relation.

Damage curves are valid for an SDOF system or an equivalent SDOF system. In this
chapter the notations of the quantities are written in a general form. If it is an
equivalent SDOF system the following equations are valid:

P=P (11.1)
R=R, (11.2)
M=M, (11.3)

Where the index e indicates that it is the equivalent value of the quantity.

11.1 Calculation equations
The differential equation for an SDOF system, when damping is neglected, is:
Mii+ R = P(¢) (11.4)

and can for a general case be solved by use of for example the central difference
method described in Section 5.2.

Using the relative simplicity to analyse structures subjected to pressure load, P., and
impulse load, /., the results from the general load case will be related to these results.
So, if a structure can endure the extreme values P, and /. obtaining maximum
deformation um,y, the structure also will endure every general load (see Figure 11.1),
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resulting in a displacement less or equal to umax. This discussion can be concluded in
the following two equations, where f, and f; indicates functions and f, # f;.

U i R e
LfE) - Al

The relation between I and /Ic is called the impulse load factor and is written as:

i
Vi= (11.6)

The relation between P; and P, is called the pressure load factor and is written as:

P
Ve =;l (11.7)

c

The strategy to calculate the impulse load factor and the pressure load factor are
further discussed in Sections 11.1.1 and 11.1.2.

Calculations are here made for three different types of transient loads as shown in
Figure /1.2. The expression for the loads are:

P@t)=P(1-1/1,) (11.8)

where #n is given in Figure 11.2.

P() P() P(0)

N
v
v

a) b) c)

Figure 11.2 Transient loads; a) rectangular load b) triangular load and c)
quadratic decreasing load.

11.1.1 Linear elastic material

In case of linear elastic material the internal resistance is proportional to the
displacement, R=Ku and Equation (11.4) can be written as:

Mii + Ku = P(t) (11.9)
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11.1.1.1 y, known

When the pressure load factor yp and either P, or P; are known the value of the
corresponding P. or P; can be calculated by use of Equation (11.7). I. can be
calculated with Equation (9.38).

[ =P~ (11.10)

The time ¢; for the general load can be calculated by solving Equation (11.9) with the
central difference method (see Section 5.2) in an iterative process where the
maximum displacement caused by the general load shall equal the maximum
displacement due to the pressure load P., see Table 9.2:

2P
u, . (P)=—= 11.11
max ( C) K ( )
When the time ¢, is calculated the impulse / is calculated as:
=,
1= [P(ydt (11.12)
t=0
For the rectangular load in Figure //.2.a the impulse / is:
I=[R(+t/t))’ dt= [Pdt =P 14 (11.13)
t=0 t=0
The triangular load in Figure //.2.b results in the impulse I:
t=t, t=t, P
I=[R(+t/t) dt = jpl(1+z/tl)dt=T‘ (11.14)
t=0 t=0
For the quadratic decreasing load in Figure //.2.c the impulse / is:
=t P
I= Pl(1+t/tl)2dt= (11.15)

t=0

By using Equation (11.6) the impulse load factor y; can be calculated.

11.1.1.2 y, known

When the impulse load factor y; is known and either /. or /; are known the value of the
corresponding /. or I; can be calculated by use of Equation (11.6). P. can be
calculated with Equation (9.38).
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R=L% (11.16)

The time ¢; for the general load can be calculated by solving Equation (11.9) with the
central difference method (see Section 5.2) in an iterative process where the
maximum displacement caused by the general load shall equal the maximum
displacement due to the impulse load 7., see Table 9.2:

I
%MUJ=JéW (11.17)

The maximum value of the general load P; is not known in the iterative process but
the relation between P; and the impulse is known for the different load cases (see
Equation (11.12)). For the rectangular load in Figure //.2.a the maximum value P; of
the transient load is, see Equation (11.13):

p== (11.18)

The maximum value of the transient load in Figure 7/.2.b is, see Equation (11.14):

21
R== (11.19)
1

For the quadratic decreasing load in Figure //.2.c the maximum value of the load is,
see Equation (11.15):

h=— (11.20)

When the time #; and the corresponding value of P; are known Equation (11.7) is used
to calculate the impulse load factor yp.

11.1.2 Ideal plastic material

In case of ideal plastic material the internal force has a constant value, R=R,, if
P; >R, and if u # 0 and Equation (11.4) can be written as:

Mii+R, = P(t) (11.21)
If P; < R, there will be no motion (u = 0 for all times) since Equation (11.4) is then:
Mii=0 (11.22)

The characteristic value of the pressure load P, equals the maximum value of the
internal force R,, in case of ideal plastic material.
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11.1.2.1 y, known

The relation between yp and y; is definite determined so when yp and /.. is known the
maximum displacement u,, can be calculated by use of Equation (g) in Table 9.2:

I 2
Upax () = 2R“M (11.23)

Observe that umax(P.) is undefined.

Solve, by means of an iterative process, the load duration time ¢; with
Equations (11.18) to (11.20) s0 umax(P1,t;) equals umax(l.). Now the value of [ is
calculated by inserting #; into Equations (11.18) to (11.20). By using Equation (11.6)
the impulse load factor y; can be calculated.

11.1.2.2 y, known

When the impulse load factor y; is known and either /. or /; are known the value of the
corresponding /. or I; can be calculated by use of Equation (11.6). The maximum
displacement u,x can be calculated by use of Equation (g) in Table 9.2:

1 2
U (1) = 2R“M (11.24)

The time ¢; for the general load can be calculated by solving Equation (11.9) with the
central difference method (see Section 5.2) in an iterative process where the
maximum displacement caused by the general load shall equal the maximum
displacement due to the impulse load /., see Equation (11.16) and Table 9.2:

The maximum value of the general load P; is not known in the iterative process but
the relation between P; and the impulse is known for the different load cases (see
Equation (11.12)). The maximum value P; of the loads, shown in Figure /7.2, are
calculated in the same way as in case of linear elastic material, see Equations (11.18)
to (11.20).

When the time #; and the corresponding value of P; are known Equation (11.7) is used
to calculate the impulse load factor yp.

11.2 Results

Table 11.1 and Table 11.2 show the relation between the pressure factor and the
impulse factor for the three transient load cases shown in Figure /7.2 when having
linear elastic and ideal plastic behaviour, respectively. In Appendix H more complete
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tables of damage are shown, see Table H.1 and Table H.2, the values in Table 11.1
and Table 11.2 are extracts from these.

The tables says that if a certain allowed displacement u is wanted and the
characteristic pressure load P. and impulse load /. result in this displacement the
maximum allowed value of the impulse / can be estimated if the maximum value of
the load P; is known and vice versa. For example:

If P; is allowed to be 2 times larger than P. (yp = 2) the maximum, allowed
value of the impulse is 1=y,/. =1.166-1. in case of linear elastic and
triangularly decreasing load (n=1).

In the same way; the maximum value of P; is allowed to be
P1=ypP.=1.269-P. if the impulse / is allowed to be 5 times larger than /.
(yr=15) in case of ideal plastic material and triangularly decreasing load (n=1).

Table 11.1  Relation between Yy, and Yy, for linear elastic and ideal plastic

material respectively when y, is known.

oL
T
P, Linear elastic behaviour Ideal plastic behaviour
Ve = P - B - B - B
c n=0 n=1 n=2 n=0 n=1 n=2
1.01 1.444 | 41.13 | 65.15 10.05 | 441.8 | 5875
1.05 1.324 | 8.491 | 11.17 | 4.583 | 42.87 | 56.25
1.1 1.255 | 4.570 | 5.931 3317 | 16.57 | 21.58
1.5 1.095 | 1.490 | 1.776 1.732 | 2.756 | 3.330
2 1.047 | 1.166 | 1.293 1.414 | 1.732 | 1.957
3 1.020 | 1.057 | 1.094 1.225 | 1.342 | 1.414
5 1.007 | 1.019 | 1.029 1.118 | 1.168 | 1.196
10 1.002 | 1.005 | 1.007 1.054 | 1.074 | 1.085
100 1.000 | 1.000 | 1.000 1.005 | 1.001 | 1.007
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Table 11.2  Relation between Yy, and Yy, for linear elastic and ideal plastic
material respectively when y, is known.

-
P P
J Linear elastic behaviour Ideal plastic behaviour
T _ _ _ _ _ _
c n=0 n=1 n=2 n=0 n=1 n=2
1.01 4.144 | 6.813 | 8.525 50.72 | 67.67 | 76.13
1.05 1.959 | 3.177 | 3.911 10.76 | 14.34 | 16.14
1.1 1.469 | 2.389 | 2.924 5.763 | 7.688 | 8.645
1.3 1.066 | 1.691 | 1.984 2452 | 3.269 | 3.678
1.5 1.003 | 1.493 | 1.694 1.800 | 2.400 | 2.700
2 1.000 | 1.296 | 1.409 1.333 | 1.775 | 1.966
3 1.000 | 1.167 | 1.228 1.125 | 1.453 | 1.562
5 1.000 | 1.090 | 1.122 1.042 | 1.269 | 1.367
10 1.000 | 1.042 | 1.056 1.010 | 1.148 | 1.182
100 1.000 | 1.005 | 1.013 1.001 | 1.028 | 1.034

Figure 11.3 and Figure 11.4 show the tables of damage, Table 11.1 and Table 11.2,
graphically for the transient loads in Figure //.2 for linear elastic and ideal plastic
material respectively. The diagrams are called damage curves.
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Figure 11.3 Damage curves for rectangular load pulse (n=0), triangular load pulse
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Figure 11.4 Damage curves for rectangular load pulse (n =0), triangular load pulse
(n=1) and quadratic decreasing load pulse (n=2) in case of ideal

plastic behaviour
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11.3 Practical use of tables of damage

11.3.1 Solution process

In practise, different inputs are known when using the tables of damage. Here some
different cases are discussed.

The approach is the same for linear elastic material and ideal plastic material. The
relation between yp and y; (and thus P,/P. and //1;) in case of linear elastic material
and ideal plastic material are shown in Table H.1 and Table H.2 in Appendix H,
extracts from these tables are shown in Table 11.1 and Table 11.2.

Known: P, P, and thus also 7,

Searched: allowed load duration time ¢,
a. The pressure load factor y, is calculated, y, =P, /P,

b. The corresponding value of ), are determined by means of tables of
damage.

c. [ are determined from / =1, [j,

4
d. The allowed load duration time ¢, is calculated by use of 7 = J-P(t) dt

t=0

Known: 7, I and thus also P,

Searched: allowed load duration time ¢,
a. The pressure load factor y, is calculated, y, =1/I,

b. The corresponding value of ), are determined by means of tables of
damage.

c. P aredetermined from P, =P, [,
d. The allowed load duration time ¢, is calculated by use of / = jP(t) dt

t=0

Known: P, ¢, y, and I,/P. =2/«
Searched: P, and [, (see also example below)

a. Calculate the impulse, 7 = I P(t)dt
t=0
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I = i EIP—C where the relation between / and
yP [c Pl

P, are found in point a. above

b. Determine a value of

c. Find in the tables of damage (Appendix H) a combination of y, and

y, fulfilling Y~ in point b. above

P

P,
d. Calculate I, = L and P, =—- (in order to check the results it can be
Vi Yp

controlled if/ /P, =2/« and if u_, (I,)=u,, (P.))

11.3.2 Example

Assume linear elastic material and that P;, ¢; and P./Ic = 2/w are known and search for
P. and I.. The beam for which the characteristic pressure and impulse load shall be
calculated is the reinforced fixed concrete beam subjected to a uniformly distributed
load used in Chapter 7, with density p=2400 kg/m’. This beam is also analysed in
Appendix D, Section D.2.4, where the values of the stiffness K is calculated. Since
linear elastic material is assumed these transformation factors are used, see Table 6.1.
The load and load duration ¢, represents an, to the equivalent static load ¢g=50 kN/m”
from the Swedish shelter regulations, Raddningsverket (2003), approximated transient
load.

P, =12500 kN, ¢, =1.12 ms, M =b[h[Lp=1.000.35[2.5[2400 =2100 kg,

el 6
= K,?,K :\/1.08392D0 1456 rad/s
k® M\ 0.762[2100

The approximated transient load is assumed to be triangular in time (as shown in
Figure 11.2.b).

P(t) = 3[1 —ij
tl

a. The impulse / is calculated:

t t
1 l P .
[=(P@yd=[p|1-L|g = Bt 12500012 5606 N
1
J J ‘ 2 2

b. The relation 128 is:
Vp
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ﬁ:i[ﬁ:ia@:m:o408
Y. P I, P 2 1250000° 2

c. Search in the tables of damage for linear elastic material (see Appendix H) for

a combination of ), and ), fulfilling Y- 0.408.

Ve
In Table H.1 in Appendix H it can be seen that y, is in between 2.6 and 2.8

since Vi - 0.4154 when y, =2.6 and Vi -
Ve Ve

variation is assumed in between these values (as shown in Figure 11.5) and the
values of ), and ), can be calculated as:

Al
_ y P/ known y P/ min
Vi =
GRO
yP max yP min

Yi—pa08 = =2 =200 —rey
v, 0.408  0.408

0.3812 when y, =2.8. Linear

0.408 —0.381
-y, )+y, =—(1.08—1.07)+1.07 =1.08
(yl,max yl,mm) y[,mm 0415 _ 0381 ( )

d. The values of P, and /, can now be calculated:

P 12500 _

P =L =22 =4735 kN
Y, 2.64
L= =799 - 6500 Ns
y, 1.08
Checks
1
Lo 600 -=137007
P 473500 I, 2
~ P w
32—2 =1.37007 ‘
w 1456
umax(lc): Ic = IC = 6500 =2.79 mm
T JKM,  awM, 14560600
U, (P) = £ L 73500 _ .79 mm

K, M, 1456”1600

e
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Figure 11.5 Linear variation is assumed between the values in Table H.I in
Appendix H.

11.4 Practical use of damage curves

11.4.1 Solution process

The damage curves can be used to determine the maximum impulse and pressure
values of a general load corresponding to a certain maximum displacement #yax. This
method can be apprehended as old-fashioned compared to other methods, especially
today when computational tools are easily accessible, but it shows principally how
general loads can be interpreted.

The characteristic impulse and pressure loads are calculated by means of uma as
shown in Section 9.4 and together they represent the characteristic point
corresponding to the origin, (y;, yp)=(1,1), in the damage curves above (see Figure
11.3 and Figure 11.4). One way to perform the analysis is shown:

1  Plot the damage curve of interest on a transparent paper, as shown in Figure
11.6. If the analysis is made on a computer no transparent papers are needed,
instead the following points are performed directly in the computer.
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Figure 11.6 Diagram for linear elastic material and n=1, see Figure 11.3.

2 Plot coordinate axis, in the same scale as for point 1 above, on a new paper.
The impulse load 7 shall be plotted on the horizontal axis and the maximum
value of the pressure load P; on the vertical axis. Diagonals shall also be
drawn where I/P; is constant. The diagonals in Figure 11.7 correspond to
t;=(n+1) I/P; where the load with n=1 is used, see Figure //.2.

100
=2 ms
/< —
z t=4 ms
= 10 ! 7
a
t;=10 ms
1
1 10 100
I [MN*ms]

Figure 11.7 Diagram for damage curve with same scale as in Figure 11.6 for n=1
(see Figure 11.2.b).

3 Mark the characteristic point in the diagram where the characteristic point is
the values of /. and P. give umax. Draw a vertical line marking the value of 7,

and a horizontal line marking the value of P,, see Figure 11.8.

4  Lay the transparent paper with the damage curve from Figure 11.6 on the
diagram in Figure 11.7 where also the characteristic point (see point 3) is
plotted. The asymptotes in Figure 11.6 shall coincide with the lines plotted in
point 3.
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5 The created damage curve is now representing all combinations of P; and /,
for a certain load-time curve and material, giving the maximum displacement
Umax for which /. and P. have been calculated. The diagonal lines give
information about the time duration ¢;.

11.4.2 Example

The same beam as used in the example in Section 11.3.2 is used here but here the
values of P; and / shall be estimated by use of damage curves. The maximum allowed
displacement uy,x corresponds t0 Umax(P:) = umax(l;) calculated in example in
Section 11.3.2. Also here linear elastic material is assumed:

el

K
u,, =279 mm, M, = ki,M =0.762-2100=1600 kg, w, = K’fP =1456 rad/s,
Ky pM
t = 2 1.12 ms

1

Search for the values of the maximum value of the load P; and the impulse / resulting
in the maximum allowed displacement #/yax.

The load is assumed to be triangular in time (as shown in Figure /7.2.b).

P()=P, (1 - i]
t]

The characteristic values of the impulse and pressure load, /. and P, is calculated by
use of Equation c¢) and d) in Table 9.1:

w py=2b - 28 p_ 1, @ KM _ 279007 04567 0600 _
max c Kle([PK QJEZKLZPM c 2 2
= 4732 kN
S U A
(1) = Ve ke, NKM kLM -
KP"* MP e’ MP

c=u,, o ki,M =2.79007 01456 1600 = 6500 Ns

By following point 1 to 5 above the damage curve of interest is created and the values
of the impulse and maximum pressure load can be determined, see Figure 11.8.

1=7000 Ns and A =12500 kN

If the maximum allowed displacement for a SDOF system uyax 1S 2.79 mm and the
mass and circular frequency is 1600 kg and 1456 rad/s respectively the maximum
value of the pressure load (which is triangular in time) is P;=12500 kN. The
maximum allowed impulse is /=7000 Ns if the time duration of the load #; is 1.12 ms.
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Figure 11.8 Diagram for damage curve for example 1.

If the duration of the load #; instead was 5 ms the values of P; 5850 kN is and / is
14500 N, see Figure 11.9.

100
<~
= : .
= 10 : : /( t=5ms H
d._ g 1T 2T 1
7 |
. AT
............... S I
Characteristic point :
5 P
/://
1 ; =
1 10 100
| [MN*ms]

Figure 11.9 Diagram for damage curve for example 1, if t;= 5 ms.
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12 Concrete

Principal relations between the load and deflection of a simply supported, reinforced
concrete beam for different loading cases are shown in Figure 12.1 where the loads
are applied by gradual stages.

Failure ﬂ

M,P,q

Yielding in steel 7}}} R ”7}}7

or concrete
e .4 ]
: P,
~— First crack appears RN B

u

Figure 12.1 Principal relations between load and deflection of a simply supported
beam subjected to different loads based on Svensk byggtjdnst (1990).

At first the beam is uncracked and the bending stiffness of the beam is high. The
deflection of the beam increases linearly with the load, the beam is in stadium I. When
the load has reached a value that gives stresses in the most tensioned section that is
equal to the flexural strength of the concrete the section will crack. Due to the crack
the change of stiffness is sharp, now the reinforcement in the tensioned zone carries
the tensional forces. For increasing load more and more cross-sections will crack, but
this will not influence the behaviour of the beam very much and the deflections
increases almost linearly with the increasing load, the beam is in stadium II.
Reinforced beams are normally designed to get yielding in the reinforcement before
the ultimate compressive strain is reached. When the reinforcement starts to yield the
beam gets a plastic behaviour and the deflection increases even though the load is
almost constant, the beam is in stadium III. At last the beam can not endure the load
and there will be flexural failure.

An idealization of the load-displacement relation is shown in Figure 12.2 where P, is
the load for which the first crack occurs and u,, is the corresponding deflection. P, is
the ultimate load and u,; is the corresponding deflection. K is the stiffness of the
uncracked beam and K is the inclination of the load-displacement curve after the first
crack occurs. In the following analyses of reinforced beams it is assumed that the steel
starts to yield before the concrete and the load for which yielding starts in the steel is
Py, and ugy 1s the corresponding deflection. This idealized behaviour of a reinforced
concrete beam will be used in this report and the idealized relation between the load
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and deflection can be found by using crack and failure criteria as shown in
Section 12.2.

P P
Failure
_____pr_l _____________ {) Pl __
Pspl ————————— : Pspl ————————— o .
| o Yielding in steel
Pt i p =K !
cr | cr :

A , A First crack occurs
chr - K : Pcr K I

ucr uspl u pl u ucr Z’lspl “

a) b)

Figure 12.2  a) Ildealized load-displacement curve used in this report b) idealized
principal load-displacement curve for reinforced concrete beam, based
on Figure 12.1.

12.1 Material behaviour

A structure subjected to a dynamic load behaves different from a structure subjected
to a static load especially when the load is an intensive impulse load with short
duration.

The strain velocity &, defined as the strain per time unit, describes how fast the
material deforms and is defined as:

e=% (12.1)

The faster the load is applied to the structure the higher strain velocity is attained in
the concrete. In Figure 12.3 strain velocities for some different load situations are
shown.

Creep Static Earthquake Hard shock Shock wave
| ] | | — [ — |

10® 107 10° 10° 10* 10° 10% 10%' 10° 10" 10* 10°
Strain velocity [s']

Figure 12.3 Strain velocity for common load situations. From Rdddningsverket
(2004).
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By experimental tests it has been found that if the strain velocity is higher than 10 s™
the dynamic magnification factor, defined as the relation between the dynamic and the
static strength, can be more than doubled if the concrete is compressed and magnified
by up to seven if the concrete is tensioned, Riddningsverket (2004). The relation
between the strain velocity and the dynamic magnification factor are shown in Figure
12.4 and Figure 12.5 for compressed and tensioned concrete respectively.

Dynamc magnification factor

2 5 A ™, Liaal L L L sl L L L 1
Static Comprassive Strength
+ varies

- ﬂm MPa
[ 20<0<30 WPa

By

N

& 50<o<ED MPo L
@ 60<a<T0 MPg

2.0 =037 ues

1.5

1.0 A

0.5

T T

108107 10° 10° 10* 10 102 107 10° 10! 10* 10°

Strain velocity [s'l]

Figure 12.4 Relation between dynamic magnification factor and strain velocity for

compressed concrete, experimental results. From Rdddningsverket
(2004).

Dynamic magnification factor
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0l 2 Xﬁ%ﬁ
1# °

0
10° 10° 10* 10° 10% 10" 100 100 100 10°

Strain velocity [s-1]

Figure 12.5 Relation between dynamic magnification factor and strain velocity for
tensioned concrete, experimental results. From Rdddningsverket

(2004).
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The increased strength for concrete structures subjected to dynamic loads, discussed
above, can partly be explained by the crack way trough the material. When a concrete
specimen is subjected to a static tensional force the cracks will find the most energy
effective way through the concrete. Since the ballast often is stronger than the paste in
concrete the most energy effective way is to go in the paste around the ballast, see
Figure 12.6. In case of dynamic loading there is no time for this and the cracks are
very often forced to go also through the ballast, which gives a higher tensile strength
of the concrete. Even though each individual crack will be more brittle in case of
dynamic loading more cracks will appear and the overall ability to take up energy
may increase somewhat. The increased strength of the concrete can also be explained
by viscose effects.

Static Dynamic
Microcracks

s N 5o

- Macrocracks — | e

Ballast

Paste

Figure 12.6 Principle crack way for static and dynamic load respectively. Based on
Réddningsverket (2004).

A concrete beam subjected to a dynamic load behaves differently from the static load
case, especially initially. For a very fast load application there can be local failures in
some sections of the beam before other parts even are aware of the load (principle
illustrated in Figure 12.7). This phenomenon can be explained by the time required to
spread the information of the external load in the material. For concrete the
longitudinal wave velocity is approximately 3500 m/s and for a 2.5 meter long beam
subjected to a concentrated load, applied at the midpoint, it will take
1.25/3500 = 0.36 ms until the information has reached the supports.
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N

Zones with risk of cracking

Figure 12.7 Principle initial behaviour of beam subjected to a dynamic
concentrated load.

When using equivalent static loads this initial behaviour is not taken into account even
though the use of equivalent static load gives a well estimated value of the maximum
displacement.

12.2 Analysis of cross-sections subjected to bending

Due to the complexity of the behaviour of a reinforced concrete beam the analysis is
made in different stages depending on if cracks have occurred or not. Analyses of
cross-sections in stadium I and II are in case of static load often calculated in service
limit state but since all calculations when designing shelters shall be made in ultimate
limit state (Rdddningsverket (2003)) only this case are treated here. Also analyses of
cross-sections in stadium III are made in ultimate limit state. By following Engstrom
(2001) the expressions useful in the analysis are stated for stadium I, IT and III
respectively.

In ultimate limit state safety factors are used when calculating the design values of the
material properties.

S
Ji=—— 12.2
Ty, (122)
E
E, =—2* 12.3
.y, (123)

In the Swedish shelter regulation the design value of the tensile stress for the steel is:
Su =097, (12.4)
The partial safety factor y, (in Equations (12.2) and (12.3)) taking the safety class into

consideration is equal to 1.0 in case of accidental load, no matter which safety class it
is. The product of the safety factor y, (in Equations (12.2) and (12.3)) taking the
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insecurity when determining the material parameters and # are, for accidental load,
shown in Table 12.1.

Table 12.1  Partial safety factors for concrete and reinforcing steel for accidental
load.

Material 1y ..

Strength parameters 1.2

Concrete
Modulus of elasticity | 1.0

Strength parameters 1.0

Reinforcing steel
Modulus of elasticity | 1.0

Due to the fact that the compressive strength of concrete increases the faster the load
is applied the design value of the compressive strength can be increased when the load
is an accidental load with dynamic behaviour.

f;c:;cidental - 1 lfccd (125)

In case of dynamic load a higher value of the modulus of elasticity for the concrete is
used, according to the Swedish design code BBK 04, Boverket (2004):

. L2LE
Ejlynamtc - ck ( 1 2 . 6)
’ Y,

12.2.1 Calculations in stadium I and II

Stadium I is earlier defined as the stadium when the cross-section is uncracked and
stadium II is defined as the stadium when the cross-section is cracked but there is still
no yielding of the material. In stadium I and II the beam has elastic behaviour.

12.2.1.1 Strain distribution for the cross-section

The deformation of the cross-section is described by the strain distribution which is
characterized by a mean strain &., and a curvature //r, see Figure 12.8. The mean
strain represents the strain in the centre of gravity of the cross-section meaning the
centre of gravity of the transformed cross-section calculated with respect to stiffness.
The meaning of a transformed cross-section is further explained in Section 12.2.1.3.
The curvature is represented by the strain gradient meaning the inclination of the
strain curve.
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Figure 12.8 The deformation of the cross-section is described by the strain
distribution based on Engstrom (2001).

At a distance z form the centre of gravity the strain can be seen as a result of the mean
strain plus a strain depending on the curvature as:

1
E(2)=¢, +—z (12.7)
r

The curvature is expressed by using the radius of curvature . The curvature can be
seen as the change of angle per unit length and can for a beam element with constant
value of the curvature be expressed as:

-=r (12.8)

where dgp is the change of angle over the element length dx. The meanings of the
notations are also seen in Figure 12.9.

_dx___ Xco

7

Figure 12.9 Relation between the radius of curvature and flexural deformation for a
beam element with constant curvature based on Engstrom (2001).

The neutral layer is defined as the layer in the cross-section where the strain and the
stress is zero. In case of pure bending the neutral layer coincides with the centre of
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gravity meaning that the mean strain ¢, is zero and the strain at a distance z from the
centre of gravity is:

£.(2) =lz (12.9)

r

12.2.1.2 Assumptions

The analysis methods described in this chapter are used to calculate normal stresses in
cross-sections subjected to pure bending (no axial forces are present). The strain
distribution is assumed to be linearly over the height of the cross-section and full
interaction is assumed between the steel and the concrete. The meaning of the full
interaction between the steel and the concrete is illustrated in Figure 12.10 where the
concrete strain ¢, equals the steel strain g at the level of the reinforcement.

gcl
M XeG
d
Centre of gravity _J
(CG) XXX X

Figure 12.10 Strain distribution in uncracked rectangular cross-section of reinforced
concrete subjected to pure bending.

&.; and ¢, are the concrete strain in the compressed and tensioned edges respectively
and x¢g 1s the distance from the compressed edge to the centre of gravity calculated
with respect to stiffness. The cross-section is subjected to a moment M.

In stadium II, when the beam is cracked due to bending, the influence of the concrete
in tension underneath the neutral layer is neglected even tough the tensioned concrete
in between the cracks influences the load carrying capacity of the beam. The influence
from the tensioned concrete is largest directly after the appearance of the first crack
and decreases when the load increases, see Figure 12.11.

Yielding are here assumed to always start in the steel meaning that the steel in the
tensile zone is assumed to reach the yield stress before the concrete strain in the
compressed edge reaches the ultimate concrete strain.
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Figure 12.11 Principal relation between the moment and mean curvature for zone
with flexural cracks. Influence from tensioned concrete between the
cracks result in a relation that smoothly approach the stadium II

stiffness.

Since stadium I or II is assumed elastic response is assumed for both concrete and
reinforcement steel.

where

OC = ECEC

o =Fc¢

s s S

o normal stress in concrete

E_modulus of elasticity for concrete

£, concrete strain

o0, normal stress in steel

E_modulus of elasticity for steel

&, steel strain

(12.10)

(12.11)

All analyses and calculation method used in this chapter neglects long time influences
such as shrinkage and creep deformations.

12.2.1.3 Transformed cross-section

In order to facilitate the calculations the steel and concrete cross-section can be
replaced with an equivalent concrete cross-section, also called a transformed cross-
section, without influencing the results. The expressions for the area of the
transformed cross-section, for a double reinforced concrete beam, in stadium I is:
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A = A +(@-DA, +(@-1)4, (12.12)

where A, whole area of the concrete (without reduction for the
reinforcement area)

A area of compressed reinforcement

A area of tensioned reinforcement

A

The factor a is the relation between the modulus of elasticity for steel and concrete
and is defined as:

ES‘
a== (12.13)

For cracked cross-sections (stadium II) the transformed cross-section is (using the
same notations as in Equation (12.12)):

A, = A, +(@-1)A, +ad, (12.14)

where 4. is the area of the compressed zone (without reduction for the reinforcement
area).

12.2.1.4 CracKk criteria

Due to the crack criterion for a beam subjected to pure bending the cross-section will
remain uncracked as long as the maximum value of the tensional stress fulfils:

Ogmx<lﬁ- (12.15)

{

{ is the crack security factor chosen to be 1.0 in order to assume a realistic crack
pattern and £, is the flexural strength calculated as:

Jon =k,
(12.16)
k=0.6+22

o

where 4 is the total height of the beam and £, is the concrete tensile strength.

and 1.0<k<1.45

This means that the cross-section will crack when the maximum value of the tensile
stress is:
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o = f cht
ct,max
’ 4

(12.17)

In Navier’s formula the concrete stresses in the cross-section can be calculated by
using the moment M in the cross-section together with the equivalent value of the
moment of inertia, /; and /j; respectively and the distance from the neutral layer. With
z defined as shown in Figure 12.8 the stress in the concrete for an uncracked cross-
section is calculated as:

Uc(z)zlﬂz (12.18)

1

In case of a cracked cross-section the concrete stress at distance z from the neutral
layer is calculated as:

0.(2) :1%2 (12.19)

17

12.2.1.5 Reinforced cross-section in stadium I

Studying the uncracked single symmetric cross-section in Figure 12.10 subjected to
pure bending. The tensioned reinforcement, with total area A, is placed in the
tensioned zone at the distance z; from the neutral layer and the compressed
reinforcement, with a total area 4;’, is placed in the compressed zone.

z, =d =X (12.20)

Here d is the effective height of the cross-section meaning the distance from the
compressed edge to the layer of reinforcement. xcc is the distance from the
compressed edge to the centre of gravity calculated with respect to the stiffness (see
Figure 12.10).

Due to the assumption of full interaction between the steel and the concrete the steel
stress can be calculated as:

0,=a0,(z,) (12.21)

where the concrete stress at the reinforcement layer o.(z,) is calculated as shown in
Equation (12.18):

M
o.(z,) =T (12.22)
1

where the moment of inertia in case of an uncracked cross-section is calculated as:
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3 ]
I, = % +(@-D4, (x .o —d') +(@-DA(d -x.,) (12.23)

12.2.1.6 Reinforced cross-section in stadium I1

In stadium II the cross-section is assumed to be cracked and the influences from the
concrete in tension is neglected (see Section 12.2.1.2). The stress distribution in the
transformed cross-section is calculated by multiplying the concrete strain with the
modulus of elasticity for concrete (see Equation (12.10)) why only the stresses in the
concrete are shown in Figure 12.12. Underneath the neutral layer fictive concrete
stresses are calculated and the steel stress is calculated from the fictive concrete stress
at the steel level.

0.(2) = EE£.(2)

M X A

L — Fictive concrete stress

_—0,(z,)=0,/a
reO000ee

Figure 12.12 Strain and stress distribution in cracked rectangular cross-section of
reinforced concrete subjected to pure bending.

The height x of the compressed concrete zone is calculated by using an equation of
equilibrium. As mentioned in Section 12.2.1.1 the centre of gravity, calculated with
respect to the stiffness, for the transformed cross-section coincides with the neutral
layer meaning:

X = Xeg (12.24)

The distance from the compressed edge to the centre of gravity for the transformed
cross-section is calculated as (for a rectangular cross-section):

bx X +(@-1)4 d" +ad d’
_7 (12.25)

X
cG
AII

Using Equations (12.14), (12.24) and (12.25) the equilibrium equation can be written
as:

x(bx+(@-1)4, +ad,)= bx% +(@-D)4, d' +add (12.26)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 115



Rearranging the terms in Equation (12.26) the equation from which x can be
calculated is:

2 )
b%+(a—l)AS (x-d')+ad (x-d)=0 (12.27)
or
2 2 ' 2 ' 1
X +Z((a—l)AS +aAS)x—Z((a—1)ASd +aASd]:O (12.28)

The moment of inertia in case of a cracked rectangular cross-section is calculated as:

3 2 [
L= (S | @A P e 220
)

Using Equation (12.24) together with Equation (12.29) gives the expression for the
moment of inertia in stadium II for a rectangular cross-section.

3 '
I, :b%+(a'—l)As (x-d') +ad4,(d-x) (12.30)

The concrete stress at the steel level is:

M
0.(z,) =T (12.31)

1

Due to the assumption of full interaction between the steel and the concrete ant that
yielding starts in the reinforcement the concrete stress at steel level can be calculated
as:

g,
o.(z,)= po (12.32)

The moment M can now be calculated by using Equations (12.31) and (12.32).

M Usv 0371
=t o M=l i (12.33)
1 K

12.2.2 Calculations in stadium III

In this chapter calculation models are shown for flexural failure due to pure bending
of reinforced concrete beams with rectangular cross-section. Only a method with
simplified stress block is shown.
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12.2.2.1 Failure criteria

In stadium III plastic behaviour of the materials are both possible and wanted.
Yielding of the material gives a ductile behaviour and facilitates force redistribution
in the structure.

The failure is determined by the deformation capacity of the materials. In the Swedish
calculation code BBK 04, Boverket (2004), the failure criteria are:

For ordinary concrete (with characteristic compressive strength f, , < 60 MPa):

* ultimate concrete strain is limited to
le.|<3.5007 (12.34)
For cold-worked reinforcing steel:
e The strain is limited to
g, <¢£,-0.01 (12.35)

where &, is the limit strain.

For hot-rolled reinforcing steel there is no limitation of the strain because the capacity
of deformation is very high.

12.2.2.2 Reinforced rectangular cross-section in stadium III

For cross-section with flexural cracks and hot-rolled reinforcing steel subjected to
pure bending the determining failure criteria is always limited by Equation (12.34),
.d.e. This means that the concrete strain in the compressed edge ¢.. has reached the
maximum value &.,.

£, =€, =3500" (12.36)

When the maximum value of the concrete strain in the compressed edge is reached the
cross-section is about to fail and the cross-section has reached the ultimate limit for
which the bearing capacity shall be calculated.

The same cross-section used in Section 12.2.1.5 and 12.2.1.6 shall be studied but in
stadium III. As in stadium II a compressive zone is formed but in here the stress
distribution is no longer linear because of the yielding, see Figure 12.13.
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Figure 12.13 Strain and stress distribution in cracked rectangular cross-section of
reinforced concrete subjected to pure bending where the maximum
value of the concrete strain in the compressed edge is reached

In case of a simplified rectangular stress block the values of a and g are 0.8 and 0.4
respectively.

The assumption of linear strain distribution means that the steel strain is equal to the
concrete strain at the reinforcement layer and the steel strain can be expressed as:

_dox, (12.37)

N cu

X

&

and as in stadium II the influence of the tensioned concrete is neglected.

The compressive resultant F,, placed at the distance fx=0.4x from the compressed
edge, can be calculated as:

F =f, blax=f, [bD.8x (12.38)
The internal lever arm is:

z=d-[x=d-04x (12.39)
Equilibrium equations for the rectangular cross-section can be expressed as:

S bI0.8x =0 [H, (12.40)
M, = f. [b0.8x(d - 0.4x) (12.41)

where M, is the ultimate moment capacity.
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12.2.2.3 Rotational capacity

The yielding capacity in case of bending, called the rotational capacity, is the largest
change of angle that a plastic hinge can undergo and still keep its maximum moment
capacity. Calculations of the rotational capacity are here made by following Svensk
byggtjanst (1990).

According to Svensk byggtjanst (1990) the rotational capacity, expressed in radians,
can be calculated as:

6,=4ABLCO07 (12.42)

where the factors 4, B and C depends on the reinforcement arrangement, the strain-
stress relation for reinforcing steel and the position of the plastic hinge respectively.

The factor 4 (where 4>0.05 must be fulfilled) is calculated as:

A=1+0.60, +1.7a) —1.4 %, (12.43)
a)bal
where

W, = % (12.44)
A,  total area of the shear reinforcement
f,,  shear strength of reinforcing steel
b. width of the compressed block
s spacing of shear reinforcement in between the plastic hinge and

where the moment is zero

f.,  tensional strength of the concrete

W, = % (12.45)

A!  total area of the reinforcement in compressed block
f.. ~ compressive strength of reinforcing steel

d effective height

f.. ~ compressive strength of the concrete
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s b, T, (12.46)
A, total area of tensioned reinforcement
£ tensile strength of reinforcing steel
B = 2100 (12.47)

35007 +f,/E,

E modulus of elasticity for reinforcing steel

s

However, there are some limitations for the expressions in Equations (12.44), (12.45)
and (12.46).

«, <2.0if s <0.80b, otherwise &, =0 (12.48)
@ < @, provided that s <150min(¢,) otherwise ! =0 (12.49)
where ¢ is the diameter of the reinforcement bars subjected to compression.

b < Gy, (12.50)

The factor B is equal to 1.0 for hot rolled, not weldable, reinforcement bars and 0.8
for hot rolled, weldable, reinforcement bars. For further information about the factor
B and its values see Svensk byggtjanst (1990).

In field the value of factor C is:

c=70,/d (12.51)
and by supports the value is:

Cc=100,/d (12.52)
where [, is the distance from the plastic hinge to the place where the moment is zero.

The calculations of required rotational capacity are made by the principle that if the
plastic hinges have to rotate in order to form the assumed failure mechanism. In each
plastic hinge the moment is known (it is the yielding moment) and the structure is
then statically determinable and the required rotation can be calculated.

The mechanism for a fixed beam is shown in Figure 12.14 below where 0,0, and
Oseia 1s the total rotations in the plastic hinges at the support and midpoint
respectively.
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Figure 12.14 Mechanism and rotations.

Due to symmetry the total rotation at the supports is equal and the total rotation at the
plastic hinge in the middle of the beam is twice the size of the support rotation.

Hﬁeld = Zesupport (1253)
where the total rotation at the supports in case of a fixed beam is:

2u
gsupport = T (1254)

The total rotation can be divided into a plastic and an elastic part as shown in
Figure 12.15.

support = Hel,support + le,supporl (1255)

6 sid = O jieta * Ot et (12.56)

el

ﬁ /_ gel ,support K

H u-—-u,
pl,support

Figure 12.15 Elastic and plastic rotations of fixed beam (compare with
Figure 12.14).

By means of elementary cases in Samuelsson, Wiberg (1999) the value of the elastic
part of the rotation can be calculated. For a fixed beam subjected to a uniformly
distributed load g the midpoint deflection, in case of static load and linear elastic
behaviour, is:

_ gl

u 12.57
“ 384EI ( )

The maximum value of ¢ for which Equation (12.57) is valid is calculated by use of
the maximum elastic moment at the support, where yielding starts:
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_ql _12Mm,,
Mo =12 = 2 12.58
V) r (129
and Equation (12.58) can be written as:
2 2
U, = ML Mol (12.59)
384E1 32EI
The corresponding rotational capacity at the support can be calculated as:
2u,
el ,support = Ll (1260)

which is easily seen in Figure 12.15.

Due to symmetry the elastic rotation capacity at the supports is equal and the elastic
rotation capacity in the middle of the beam is twice the size of the support rotation.

4u,

gel,ﬁeld = 2eel,support = L l (1261)

The plastic support rotation can now be calculated as:
_ _2u 2u, 2u M,L

017[ ,support gsupport - Bel,support - T - T - T - ﬁ (1262)

and the plastic filed rotation is:
_ _du 4Au, 4u M,L
sz,ﬁezd - 0ﬁeld - Hel,ﬁeld - T - T = T - 8? (12.63)

12.3 Requirements of structural parts and materials in
shelters due to Swedish shelter regulations

In order to fulfil demands on functionality and durability of a shelter some minimum
requirements on design and material are presented in the Swedish shelter regulation
where the shelter is assumed to be built of reinforced concrete. Here only a brief
review of the requirements is done, for further information see Radddningsverket
(2003). The characteristic values of the loads shall be used in the analyses and safety
coefficients for accidental loads shall be used.

Minimum requirements for thicknesses of structural elements in a shelter due to the
Swedish shelter regulation are shown in Table 12.2. The values in Table 12.2 are valid
for structures assumed to have no significant protection from other buildings and are
based on thicknesses required to protection from splinter and radioactive radiation.
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Table 12.2  Minimum thickness of structural members in shelters

Structural part | Minimum thickness [mm]

Roof 350
Floor 200
Wall (outer) 350

The concrete used in the shelter shall have at least strength class C25/30 and the
amount of reinforcement is limited to:

0.14% < p<1.1% where p= bAﬁu (12.64)

The reinforcement shall be placed in two perpendicular layers with maximum
200 mm spacing between the parallel bars. No shortening of the reinforcement in
fields is allowed and the maximum thickness of concrete cover is 50 mm.
Reinforcement shall be placed both in tensile and compression zone.

Due to the Swedish shelter regulations a shelters shall endure an impulse load caused
by a bomb containing 125 kg of the explosive substance TNT (trotyl) exploding
5 meters from the wall. This impulse load is assumed to, at the most, correspond to
the equivalent static load g=50 kN/m” which is applied as shown in Figure 12.16.

19

7777
Figure 12.16 Load application due to Swedish shelter regulation where q=50 kN/m’.

The support moment M, shall not be more than 50 per cent higher than the moment in
the field M, in order to get a ductile behaviour of the structure, i.e.:

M, <1.5M, (12.65)
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12.4 Example; minimum amount of reinforcement

A wall in a shelter will be analysed. The design and geometry of the wall is chosen to
fulfil the minimum requirements in Section 12.3. The measurements of the wall and
the load applied are shown in Figure 12.17 below.

q

y

0350 m

9 0.350 m

A 4

2.50 m

0.200 m

Figure 12.17 Shelter wall subjected to a uniformly distributed load q .

The wall in the shelter can be seen as a fixed beam with length 2.50 m subjected to a
uniformly distributed load ¢ as shown in Figure 12.18. Influences from the normal
force in the wall, caused by the uniformly distributed load subjected to the shelter roof
are neglected, giving calculations on the safe side.

2.50 m

e NNN\N\
K ANNNN

Figure 12.18 Idealization of shelter wall.

Studying a 1.0 meter wide strip of the beam gives a cross-section as shown in Figure
12.19.

F A! - area of reinforcement in compression zone

Z

h=0.35m d=0.30m

—

b=1.0m

J; A, - area of reinforcement in tensile zone

Figure 12.19 Cross-section of idealized beam in Figure 12.18.
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Concrete C25/30 and reinforcement bars B5S00B are used and calculations are made in
order to get the load-displacement curve for the beam, shown in Appendix 1.

The stiffness K (see Figure 12.2) of the uncracked beam is:
K =3332 MN/m (12.66)

The inclination of the load-displacement curve after the first crack has occurred, K’
(see Figure 12.2) is:

K'=102.7 MN/m (12.67)
The maximum value of the internal force R,, is:

Rm = Qpl |1 :Ppl :5024 kN (1268)

By means of empirical relations in Raddningsverket (2004) the corresponding impulse
load to the equivalent static load g can be determined. Here ¢ corresponds to an
impulse load where the maximum value of the load P; is approximately 5000 kN/m?
and the impulse is about 2800 Ns/m”. If the load is assumed to be a triangular load (in
time) as shown in Figure 12.20 the duration of the load can be calculated by means of
Equation (12.69).

t=t,

I:IP(t)dt:E—Bl - t1:£=L8003:1.12m (12.69
J 2 P 5000000 )

S

\ P(1)

Figure 12.20 Triangular load (in time)

The value of the maximum deflection of the beam subjected to a dynamic load is
calculated by means of transforming the beam into an SDOF system as described in
Chapter 7. The equivalent values of the load, internal force and the mass is for the
studied beam:

M,=Kk, M

(12.70)
R, =KyR
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P =k,P

In case of trilinear material the differential equations in the different ranges are:

In the elastic range
Mi+Ku=P (12.71)

In the elastoplastic range

Meii-l-Keucr +K;(u_ucr) :138 (1272)
In the plastic range

The transformation factors for linear elastic material is used in all ranges and
Equations (12.71), (12.72) and (12.73) can now be written as:

In the elastic range

K¢ Mii + K Ku = K¢ P (12.74)
In the elastoplastic range
KelM-- + el r _ — el (1275)
m U KK(Kucr+K(u ucr))_KPP
In the plastic range
P s (12.76)

KoGMii+KIR, =K;P
The transformation factors for linear elastic material are listed in Table 6.1:

The maximum displacement, umax, for the SDOF system, with equivalent quantities
for mass, internal force and external load, is calculated by means of the central
difference method (see Section 5.2) and by use of an in OCTAVE program, developed
for this project, see Section 7.1.1.

u_ =31.1mm (12.77)

If instead the transformation factors for ideal plastic material are used in Equations
(12.74) to (12.76) the maximum displacement found by SDOF analysis is:

u_ = 352mm (12.78)

The maximum deflection when using transformation factors for linear elastic material
in the SDOF analysis is smaller than the deflection achieved when using
transformation factors for ideal plastic material in the analysis. This is expected since
when using linear elastic values the mass becomes larger than when using the ideal
plastic values since x> k)", meaning that less energy is consumed when starting up
the system with ideal plastic values, see discussion in Section 8.1.
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Available rotational capacity, in support and field respectively, for the beam is, see
Appendix I:

gd,pl,suppnrt = 00092 rad (1279)
6, o =0.0155 rad (12.80)

The required rotational rotation capacity, in support and field respectively, for the
beam is, see Appendix I:

6, spon = 0.0235 rad (12.81)
6, s =0.0470 rad (12.82)

The required rotational capacity is much higher than the available rotational capacity
(compare Equations (12.79) and (12.80) with Equations (12.81) and (12.82)) meaning
that the wall in the shelter, see Figure 12.18, subjected to the transient load, in Figure
12.20, will not endure the load and will collapse.

The equivalent load used in the Swedish shelter regulations, Ridddningsverket (2003)
is based on a load with long duration since this load is the one assumed to be most
unfavourable. However, the results above indicate that this might not be true. On the
other hand, the calculation method used when estimating the rotational capacities in
Svensk byggtjanst (1990) might be to conservative. When the equivalent load used in
the Swedish shelter regulations where determined the way of calculating the rotational
capacity used in Svensk byggtjinst (1990) where not known, or at least not well-
known.

Now also consider linear elastic and ideal plastic material behaviour. In the linear
elastic case the stiffness K is assumed to be the same as the stiffness K for the trilinear
material (see Equation (12.66)). For ideal plastic material the maximum value of the
internal force R,, is the same as in case of trilinear material, see Equation (12.68).

12.4.1 Linear elastic behaviour
In case of linear elastic material the differential equation is:

Mji+R, =P, (12.83)
For linear elastic material the internal force is:

R=K Ul (12.84)
where the stiffness K is assumed to be the same as in the trilinear case:

K =3332 MN/m (12.85)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 127



Inserting Equations (12.70) and (12.84) into Equation (12.83) the differential equation
is:

K, Mi+kK.Ku=k,P (12.86)

where the transformation factors for the linear elastic material (in Table 6.1) are used:

K, =0.406
K, =0.533 (12.87)
K, =0.533

The maximum displacement, wuma, calculated by use of an OCTAVE program,
developed for this project.

U, = 2.81 mm (12.88)

m

A very small deflection is achieved when having linear elastic material and the same
elastic stiffness is used as in case of trilinear material.

12.4.2 Ideal plastic behaviour

In case of ideal plastic material the differential equation is:
Mjgi+R, =P when P(t)=R, or u(t)#0 (12.89)

The maximum value of the internal force R,, is assumed to be the same as in case of
trilinear material (see Equation (12.68)):

R, =502.4 kN (12.90)

Inserting Equations (12.70) into Equation (12.89) the differential equation is:
KyMii+K,R=K,P (12.91)

where the transformation factors for the ideal plastic material (in Table 6.1) are used:

K, =1/3
K, =05 (12.92)
Ky =05

The maximum displacement, uy.x, for the SDOF system, calculated by use of an
OCTAVE program, developed for this project is:

max

u,. = 327 mm (12.93)
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The maximum value of the deflection for ideal plastic material, Equation (12.93), is
lower than the maximum deflection achieved when using transformations factors for
ideal plastic material in the analysis of trilinear material, Equation (12.82). This is
expected since more energy is consumed initially in the ideal plastic material case.

Of the same reason, it can be probable that the maximum deflection in case of ideal
plastic material shall be larger than when using transformation factors for linear
elastic material in the trilinear material case. However, this can not be guaranteed
since the equivalent mass in case of ideal plastic material is larger than for trilinear
material when transformation factors for linear elastic material is used. When
comparing Equations (12.93) and (12.77) it is seen that the displacement for the
trilinear material is smaller than for ideal plastic material.

12.5 Example; not minimum amount of reinforcement

The beam analysed in Chapter 7 had a chosen amount of reinforcement not equal to
the minimum amount, as in the example above. Since the beam is the same as used in
Chapter 7 there is no need to calculate the load-displacement relation again, instead
the values are found in Appendix D. However, the rotational capacities where not
calculated in Appendix D, these calculations are made in Appendix 1.

The maximum displacement, u,y, for the SDOF system with trilinear material, when
using transformation factors for linear elastic case, is:

Uy = 183 mm (12.94)

If, instead, the transformation factors for the ideal plastic material is used the
maximum deflection is:

u_ =224 mm (12.95)

max

Available rotational capacity, in support and field respectively, for the beam is, see
Appendix I:

gd,pl,suppurt = 00090 rad (1296)
6, jus =0.0157 rad (12.97)

The required rotational rotation capacity, in support and field respectively, for the
beam is, see Appendix I:

7

pl,support

=0.0132 rad (12.98)

6, s = 0.0264 rad (12.99)

Also for this amount of reinforcement the available rotational capacity is smaller than
the required rotational capacity.
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In case of ideal plastic material the maximum deflection is:
u,, = 18.1 mm (12.100)

The same comments as in Example above is applicationable here when comparing the
maximum deflection for trilinear material with transformation factors for linear elastic
and ideal plastic material, respectively. Also when comparing the maximum
deflection when having ideal plastic material and transformation factors for the ideal
plastic material in the analysis of the trilinear material the comments in example
above are valid here. When comparing Equations (12.94) and (12.100) it is seen that
the maximum displacement for ideal plastic material is smaller than the displacement
for trilinear material with transformation factors for linear elastic material which was
not the case in the example above.
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13 Conclusions and ideas of further investigations

In this project simplified hand-calculation methods are compiled and discussed. For
transient loads, for example loads caused by explosions, structures behave different
from when subjected to static loads. Hence, the dynamic effects and the devastation
they can cause is hard to take into account in the simplified hand-calculation methods.
For example influences of higher modes and spread out yielding areas are not taken
into account in the simplified calculation methods described in this thesis. Another
thing, not taken to account in the hand-calculation methods, is that when a load with
very short duration is applied to a beam large local deformations can occur in the
application area before the rest of the beam is even aware of the load. This means that
in order not to overlook any negative effects when designing with regard to
explosions it is important that the real behaviour of the beam, or at least a good
approximation of it, is known by the designer.

In this report the methodology of transforming beams to SDOF systems are shown
and transformation factors for some typical cases and material behaviours are derived.
The method of transforming deformable bodies into SDOF systems is useful since it
simplifies the analyses of deformable structures subjected to transient loads. When the
SDOF method is applicationable equivalent static loads, tabled beam equations and
damage tables/curves can be used in order to simplify the analyses even more.
However, due to limited available time the limit for when a load can be assumed to be
an impulse load is not dealth with in this thesis but is worth further investigation.

The agreement between the response of beams calculated by use of SDOF systems
and the real behaviour of the beam is investigated by comparing the results with
results from FE analyses. When the FE models of the beams are made in order to
imitate the assumed behaviour in the SDOF analyses the agreement between the
results are good. However, this way of modelling can be questioned since the SDOF
method must also agree with the real behaviour of the beams. When modelling the
beams for a more realistic behaviour, where yielding can occur also in areas outside
the points where plastic hinges are assumed to appear the agreement differs for
different material behaviour. In case of linear elastic material the agreement is still
accurate since there is no plasticity but in case of plastic effects the agreement is less
pleasing; at least for beams subjected to concentrated loads. Hence the use of this
method when analysing structures made of reinforced concrete shall be used with
caution, at least before further, deeper and more carefully investigations are made.

When the SDOF method is used to analyse a wall in a shelter, represented by a
reinforced concrete beam, subjected to a load corresponding to the load that the
shelter shall withstand due to the Swedish shelter regulations, it turns out that the
beam can not withstand the load. This indicates that either the equivalent load given in
the Swedish shelter regulations are too small or the calculation method for the
rotational capacity according to Svensk byggtjanst (1990) is too conservative.

However, even if the available rotational capacity is too small compared to the
required rotational capacity this will probably not cause failure. The analyses used
utilize simplifications and idealizations of the reality that result in capacities on the
safe side.
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APPENDIX A Transformation factors for linear
elastic material

The transformation factors for linear elastic material are derived in Sections 6.2.1,
6.2.2 and 6.2.3.1:

=L 2
17 u(x,0)
— dx A.l
o L[(us(t)] D
j u(x 1) 7.0
— x=0 uS( )
Kp = x=L (A.2)
jq(x,t)dx
x=0
x=L
jM(x)u"(x)dx
K, =— X:Ox:L (A3)
“s Jq(x, t)dx
x=0
x=L
In case of concentrated loads applied in the system point jq(x, t)dx = P(t) and the
x=0

transformation factor for the load Equation (A.2) can be written as:

x=L

u(x,t) u(x‘ ,1)
Lus(t) q(x, t)dx o P(t)

P(t) P(t)

(A.4)

p =

The relation between the bending moment and the curvature u"(x) is, in case of linear
elastic material:

M (x)

=g

(A.5)

The transformation factor for the internal force in Equation (A.3) when the beam is
subjected to a concentrated load can thus be written as:

i XJ‘OM (x)*dx (A.6)

- uSEI P(t)

Kk

The transformation factor for the mass Equation (A.1) is not influenced by the load
shape.
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In case of a uniformly distributed load .[ q(x,t)dx = q(¢t) L and the transformation
x=0
factor for the load in Equation (A.2) can be written as:

q(t) J- u(x t) J- u(x 1) ux,t
L

gL 2, u (t) o u, (1) (A.7)

P_

By use of Equation (A.5) the transformation factor for the internal force in
Equation (A.3) when the beam is subjected to a uniformly distributed load can be
written as:

IM(X) a (A.8)

K

uEl q(t)LL

A.1 Case (1.1)

For a simply supported beam subjected to a concentrated load, as in Figure A.1, the
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is:

I’ 4x° L
= [P for 0<x<— A9
1= 48EI( T J =2 (8-9)

where x is a coordinate in longitudinal direction with start point at one end of the
beam.

o r

Figure A.1  Simply supported beam subjected to a concentrated load.

The deflection of the system point, located in the middle of the beam, is:

pr

A.10
48E1 ( )

u, =u(x=1LJ2)=

By rearranging the terms in Equation (A.10) the expression for the load can be written
as:

48E1

pP= IE u,

(A.11)

and the moment distribution along the beam can be expressed as:
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M(x)Z% for O<xS% (A.12)

By means of Equation (A.1) and due to symmetry the transformation factor for the
mass can be calculated as:

2 =2 (48E] P2 4x3 ’
Ky =5 | | —5-B—|3x dx =
L L 48E]

x=0

_% _[ (9 2—24—+16—Jd = (A.13)

_2[5p 20 160170
r 512 7 L4

=0.4857

=0
Concentrated load applied in the system point gives (see Equation (A.4)):

K, =1.0000 (A.14)

By inserting Equations (A.10) to (A.12) into Equation (A.6) the transformation factor
for the internal force is calculated.

x=L 3 x=L/2 2
K = [ M(xydx = L 22 j(ﬁ]dxz

 PuEl 2, 48EI u’El 2, \ 2
AT Aar e Y P (A1)
= — [¥ax="5|% | =1.0000
48E1 21° L o
Finally the values of «,,, and k,, are calculated.
Kyp = Ky Ky = 0.4857/1.0000 = 0.4857 (A.16)
Kyp = Ky [Kp =1.0000/1.0000 =1.0000 (A.17)

A.2 Case (1.2)

For a simply supported beam subjected to a uniformly distributed load, as in Figure
A.2, the deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is:

u(x) = = (x—2i+x—]511 (A.18)

24EI rr I

where x is a coordinate in longitudinal direction with start point at one end of the
beam.
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o e

Figure A.2  Simply supported beam subjected to a uniformly distributed load.

The deflection of the system point, located in the middle of the beam, is:

5qL*

u =u(x=»L/2)=
* ( /) 384E]

(A.19)

By rearranging the terms in Equation (A.19) the expression for the load can be written
as:

384E1
L= U, (A.20)
5L
and the moment distribution along the beam can be expressed as:
gL _q >
Mx)=—x—-=x A2l
() =x=3 (A.21)

By means of Equation (A.1) the transformation factor for the mass can be calculated

as.
1216 260 )Y
Ky=—||=—|x- +— || dx=
M L;[O(SL( 12 L3D

256 {1 L 4xS 22X 4y 4x8+1x9}x:L (A.22)

37 512 610 7L1° 8I° 9I°

25013
=0.5039

x=0

Uniformly distributed load gives (see Equation (A.7)):

116 27 K)), 16 [x X T
S A1 | e
=0 = (A.23)

=16 _ 0.6400
25

By inserting Equations (A.19) to (A.21) into Equation (A.8) the transformation factor
for the internal force is calculated.
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2
1 L ql
Ky = J. 4295 92 gy =
glu EI L\ 2 12 2

2 x=L
ifggﬁ‘ : xjoL ¥ fdx = (A24)
53 s x=L
S, TR
Finally the values of «,, and «,, are calculated.
Kyp =K, [K» =0.5039/0.6400 = 0.7873 (A.25)
Kyp =Ky [Kp =0.6400/0.6400 =1.0000 (A.206)

A.3 Case (2.1)

For a fixed beam subjected to a concentrated load, as in Figure A.3, the deflection
along the beam (tabled in Samuelsson and Wiberg (1999)) is:

L ,  4x L
= -—— [P for O0<x<— A.27
ach 48EI( YL ] ) (A.27)

where x is a coordinate in longitudinal direction with start point at one end of the
beam.

—t

Figure A.3  Fixed beam subjected to a concentrated load.

The deflection of the system point, located in the middle of the beam, is:

P
192E1

u =u(x=1L/2)= (A.28)

By rearranging the terms in Equation (A.28) the expression for the load can be written
as:

192E1

pP= IE u,

(A.29)

and the moment distribution along the beam can be expressed as:
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My =P g 0<x<k (A.30)
2 8 2

By means of Equation (A.1) and due to symmetry the transformation factor for the
mass can be calculated as:

_ 2
27 4 4x°
K, =— —|3x*—— || dx =
Y L x.IO (Lz [ L ]j

. A (A.31)
=¥Fx5 +ﬁx—+ﬁx—2} =0.3714
L5 6 L 7L |_,
Concentrated load applied in the system point gives (see Equation (A.4)):
K, =1.0000 (A.32)

By inserting Equations (A.28) to (A.30) into Equation (A.6) the transformation factor
for the internal force is calculated.

Kk

_ L 2 “/z(ﬁ_gjzdx_
192E1 u’EI 1,2 8

L 192215‘1“/2[2 r ij _
x + dx =

“1o2mr 20 M\ 16 2 (A.33)
S 5 =L/
- % [% +%‘ -%LO =1.0000
Finally the values of «,,, and k,,, are calculated.
Kyp =Ky [Kp =0.3714/1.0000 = 0.3714 (A.34)
Kyp = Ky /K =1.0000/1.0000 =1.0000 (A.35)

A.4 Case (2.2)

For a simply supported beam subjected to a uniformly distributed load, as in Figure
A 4, the deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is:

X _X ?
u(x)= S4Bl (1 Lj Lg (A.36)

where x is a coordinate in longitudinal direction with start point at one end of the
beam.
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3 ! R
N N
Figure A.4  Fixed beam subjected to a uniformly distributed load.

The deflection of the system point, located in the middle of the beam, is:

qL’

u =u(x=1L7/2)=
’ ( /) 384E]

(A.37)

By rearranging the terms in Equation (A.37) the expression for the load can be written
as:

384E1

gL = I

” (A.38)

and the moment distribution along the beam can be expressed as:

L L
M(x) = q?x %2 —%xz (A.39)

By means of Equation (A.1) the transformation factor for the mass can be calculated

as:
K _lT 16 1+x—2—2£ 2dx—
Yorpilre r L

_162{1x5 2 x° 6x7_1x8+1x_9T:L (A.40)

=0.4063

x=0

e e T

sIY 30 715 20 9

L

Uniformly distributed load gives (see Equation (A.7)):

g

x=L
16/1x> 1x* 1x
:—[m i 3?} T

(A.41)

=0

By inserting Equations (A.37) to (A.39) into Equation (A.8) the transformation factor
for the internal force is calculated.
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3 x=L 2
L ! j(ﬁx—ixzj dx =

 384Elu, w EI 2\ 27 2

384 ’ (A42)
= S I Lx——-x"| dx=

4L 2, 6

4 3.2 2.3 4 5 =L

:9_? L'x Lx +4Lx _Lx L X 2220.5333

L] 36 6 9 2 51, 15

Finally the values of «,,, and k,,, are calculated.

Kyp =Ky [Kp =0.4063/0.5333 =0.7619 (A.43)
Kyp = K/K,, =0.5333/0.5333 =1.0000 (A.44)

A.5 Case (3.1)

For a cantilever beam subjected to a concentrated load, as in Figure A.5, the
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is:

_x’L _x
u(x) = SE] [1 3Lj LP (A.45)

where x is a coordinate in longitudinal direction with start point at the support.
3 ¢
N

Figure A.5  Cantilever beam subjected to a concentrated load.

The deflection of the system point, located in the free end of the beam, is:

pPr’
3EI

u, =u(x=L)= (A.46)

By rearranging the terms in Equation (A.46) the expression for the load can be written

as:

3EI
P= IE u, (A.47)

and the moment distribution along the beam can be expressed as:
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M(x)=Px—-PL (A.48)

By means of Equation (A.1) the transformation factor for the mass can be calculated

as:
1% L 3x
K, =— dx =
YL (ZLZ J
o | - (A.49)
= |20+ xz A so23s7
4L |5 7L L,
Concentrated load applied in the system point gives (see Equation (A.4)):
K, =1.0000 (A.50)

By inserting Equations (A.46) to (A.48) into Equation (A.6) the transformation factor
for the internal force is calculated.

=
%

L(xz ~2Lx+ 1 )dx = (A51)

3 x=L
= i{% —Lx*+ sz} =1.0000

x=0
Finally the values of «,, and «,, are calculated.
Kyp =Ky [Kp =0.2357/1.0000 = 0.2357 (A.52)

Kep = Ky /K, =1.0000/1.0000 =1.0000 (A.53)

A.6 Case (3.2)

For a cantilever beam subjected to a uniformly distributed load, as in Figure A.6, the
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is:

x*I? 4x x° ?
u(x) = -2+ A.54
(x) = 24EI[ L I’ g ( )

where x is a coordinate in longitudinal direction with start point at the support.
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Figure A.6  Cantilever beam subjected to a uniformly distributed load.

The deflection of the system point, located in the free end of the beam, is:

qL’

u =u(x=L)=
s =u( ) SE]

(A.55)

By rearranging the terms in Equation (A.37) the expression for the load can be written
as:

SEI
S (A.56)

gL =
and the moment distribution along the beam can be expressed as:
M(x) :qu—qT—%xz (A.57)

By means of Equation (A.1) the transformation factor for the mass can be calculated
as:

8 6 4x7 xS 1 x9 :|X:L (A.58)
PR =

Uniformly distributed load gives (see Equation (A.7)):

134 x? x’ X
Ky=— | | ==| 6+ -4=|ldx =
r LXL[MZ( I’ LDJ

1f2x 16 1277
=— Y _——3+——4 =0.4000
32 30 151

x=0

(A.59)

By inserting Equations (A.55) to (A.57) into Equation (A.8) the transformation factor
for the internal force is calculated.
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1 =t 2 2
Ky = .[ qu—q———x2 dx =
qLu El <, 2
x=L 2 2\
= is Lx L dx =
r 2 2
g [ 37252 4 (A.60)
= [ | =D+ -+ ldx =
rl\4 2
4 3.2 2.3 4 s 7=k
:% L'x Lx +Lx _Lxt  x 22:0.4000
L\ 4 2 2 4 20| S
Finally the values of «,, and «,, are calculated.
Kyp =K,y [Kp =0.2568/0.4000 =0.6420 (A.61)
Kyp =Ky /Kp =0.4000/0.4000 =1.0000 (A.62)
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APPENDIX B Transformation factors for ideal
plastic material

The transformation factors for ideal plastic material are derived in Sections 6.2.1,
6.2.2 and 6.2.3.2:

_ 1 T u(x,t)
Ky L[[u(t)] (B.1)
j u(x 1) 7.0
K, =20 0 (B.2)
Iq(x t)dx
L XILMu"(x)dx
1 " | R
K = jMu (X)dx=—=0 (B.3)
s =0 | g(x,t)dx

B.1 Case (1.1) and (1.2)

For a simply supported beam one plastic hinge will develop in the middle of the beam
(the system point) if the load is symmetrical. The mechanisms in case of a
concentrated and uniformly distributed load respectively can be seen in Figure B.1.

2u, 2u,

VR WY

Figure B.1  Simply supported beam subjected to a) concentrated load b) uniformly
distributed load.

The deflection u(x) along the beam can be expressed as:

u(x)=u, %x for x<L/2 (B.4)
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where u_ is the displacement of the system point, x is a coordinate in longitudinal

direction of the beam with start point at one end of the beam and L is the length of the
beam.

The first derivative of u(x) is:

u'(x) =u, % for x<L/2 (B.5)

Equation (B.1) gives the expression of the transformation factor for the mass:

t
__j u(xn) | (B.6)
u,(t)
By means of Equation (B.4) this expression can be rewritten as:
22X 1
K, =— — | dx=— B.7
I j 0 [ L 5 (B.7)

The value of the transformation factor for mass is the same for both case (1.1) and
(1.2) in case of ideal plastic material.

The transformation factor for the load is (see Equation (B.2)):

u(x,t)

XJZ.O uq(’t) q(x,t)dx
K, = — (B.8)
Iq(x,t)dx

x=0

In case of concentrated load acting in the system point Equation (B.8) can be written
as:

x=(r/2)*
j u()itt)) q(x,t)dx
= ol =%%P=L%M) (B.9)

Iq(x,t)dx “s
x=0

x=L

since Iq(x,t)dx =P and q(x,t) =0 when x # L/2
x=0

By means of Equation (B.4) the expression for transformation factor in Equation (B.8)
in case of a uniformly distributed load can be written as:
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x=L/2 )

X
2 '!0 VA q(x, t)dx

Ky, = (B.10)

x=L
j q(x,t)dx
x=0

The expression for the transformation factor for the internal resisting force, when
having an ideal plastic material is (see Equation (B.3)):

1 x=L
K, =—— | Mu"(x)dx B.11
K Rmus x'z[o ( ) ( )

The curvature u"(x) is zero everywhere in the beam except in the system point

(which is located in the middle of the beam) where the moment has a known constant
value, Equation (B.11) can be written as:

) YR
Ky =R— IMu"(x)dx= L Iu"(x)dx (B.12)

mths (1]2) mtls (1]2)

The integral of the curvature in the system point is one way to express the change of
the angle in this point. Due to symmetry the change of angle in the system point is
twice the change of angle over the supports.

(1)
[u"@)dx =u'(L/2) =2'(0) =2 (L) :4% (B.13)
(12

The maximum internal resistance R, is equal to the external load needed to create the

mechanism, P

1> (or g, LL for uniformly distributed load) (see

Figure B.1). The moment in the system point is equal to the plastic moment, M ;.

B.1.1 Case (1.1)

For a simply supported beam subjected to a concentrated load (see

Figure B.1.a) the plastic moment is:

— PplL
M, = 1 (B.14)
Equation (B.9) gives the transformation factor for the load for case (1.1).
K, =1.0000 (B.15)
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Equations (B.13) and (B.14) inserted into Equation (B.12) gives the transformation
factor for the internal resisting force for case (1.1).

L2y P, L P, P
KK = rl J’u"(x)dx:L;4&:_pl:_pl:
wlhs (1) 4 Ru, L R, P, (B.16)
=1.0000
B.1.2 Case (1.2)
For a simply supported beam subjected to a uniformly distributed load (see
Figure B.1.b) the plastic moment is:
LZ
M, =2 (B.17)
8
Equation (B.10) gives the transformation factor for the load for case (1.2).
x=L/2 x=L/2
2x 4q
2 —q(x,)dx — |xdx =
K, = xLLq( ) _LxL _4 x’ L/Z_l B.18
P x=L q L LZ 2 . 2 ( . )
j q(x,t)dx x=0
x=0

Equation (B.13) and (B.17) inserted in Equation (B.12) gives the transformation
factor for the internal resisting force for case (1.2).

([‘/2)+ L2 4 L
Ky = [y =dom LA Ldpn
8 Ru, L 2q,L 2

mts (1)

(B.19)

B.2 Case (2.1) and (2.2)

For a beam fixed at both ends there will be one plastic hinge in the middle of the
beam (the system point) and one hinge at each support if the load is symmetrical. The
mechanism can be seen in Figure B.2.
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a) b) L
Figure B.2  Fixed beam subjected to a) concentrated load b) uniformly distributed
load.
The deflection u(x) along the beam can be expressed as:
2
u(x)=u, 7 for x<L/2 (B.20)

where u_ is the displacement of the system point, x is a coordinate in longitudinal

direction of the beam with start point at one end of the beam and L is the length of the
beam.

And the first derivative of u(x) is:
u'(x)=u 2 (B.21)
s L ‘

Since the mechanisms in case (2.1) and (2.2) are the same as in case (1.1) and (1.2)
respectively the transformation factors for the mass and the load calculated in
Appendix B.1 can be used. The transformation factor for the mass is than:

22 ox Y 1
Kk, == [ | = | dx== B.22
v LJ[J 5 (B.22)

The value of the transformation factor for mass is the same for both case (2.1) and
(2.2). The transformation factor of the load depends on the shape of the load and
differs in case (2.1) and (2.2).

The expression for the transformation factor for the internal resisting load when
having an ideal plastic material is (see Equation (6.42)).
1 x=L
Ky =—— [ Mu"(x)dx (B.23)

m”"s x=0

The curvature u"(x) is zero everywhere in the beam except in the hinges where the
moment has a known constant value. Equation (B.23) can be written as:
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m N

(z/2)"
K, = 2 {JMM"(x)dx+ IMu"(x)dx+ jMu (x)de

e (B.24)

0! (z/2)"
[J-u"(x)dx + /ju"(x)dx + J.u"(x)a’xJ

m=s \ 0 (L/2) L

The integral of the curvature in the hinges is one way to express the change of the
angle in these points. Due to symmetry the change of angle in the system point is
twice the change of angle over the supports.

(12"
[u'()dx =u'(L/2) =2 (0) =2 ' (L) = 4? (B.25)
/2y

The maximum internal resistance R, is equal to the external load needed to create the
mechanism, P,, (or g, [L for uniformly distributed load) (see Figure B.2). The

moment in the system point is equal to the plastic moment, M ,

B.2.1 Case (2.1)

For a beam subjected to a concentrated load (see Figure B.2.a) the plastic moment is:

P,L
M, = (B.26)
8
The transformation factor for the load is the same as in case (1.1).
K, =1.0000 (B.27)

Equation (B.25) and (B.26) inserted in Equation (B.23) gives the transformation
factor for the internal resisting force for case (2.1).

M 0* (L2)*
Iu"(x)dx+ Iu"(x)dx+ ju (x)dx | =
s \ 0” (L/2)

_ Pyl 1 [2u5+4u5+2usj_1’p,

(B.28)

L L L
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B.2.2 Case (2.2)

For a beam subjected to a uniformly distributed load (see Figure B.2.b) the plastic
moment is:

_q 1L2
Mpl _fi_6 (B.29)

The transformation factor for the load is the same as in case (1.2).

K, = (B.30)

1
2

Equation (B.25) and (B.29) inserted in Equation (B.23) gives the transformation
factor for the internal resisting force for case (2.2).

M 0* (L/2)* L
Ky = R Z[ ju"(x)dx+ ju"(x)dx+ _[u"(x)dx =

0” (z/2) L

m-s

(B.31)

_4uL 1 2u, 4w, 2u)_dul _ aul _1
16 Ru\ L L L) 2R, 2q,L 2

B.3 Case (3.1) and (3.2)

For a cantilever beam there will be one plastic hinge at the support. The mechanism
can be seen in

Figure B.3.
N ¢ N 1 |
NI NI X
" i
L L
a) b)
Figure B.3  Cantilever beam subjected to a) concentrated load b) uniformly

distributed load.

The deflection u(x) along the beam can be expressed as:
u,
u(x) =T°x (B.32)

where u_ is the displacement of the system point, x is a coordinate in longitudinal

direction of the beam with start point at one end of the beam and L is the length of the
beam.
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And the first derivative of u(x) is:
u
u'(x) =— B.33
(x) 7 (B.33)

Equation (6.18) gives the expression of the transformation factor for the mass:

_1 j (”(" ”] (B.34)
u,(t)
By means of Equation (B.32) this expression can be rewritten as:
(Y 12T
== || =|dx=—— =— B.35
" LXJ;O(LJ L{S 3 (8.33)

The value of the transformation factor for mass is the same for both case (3.1) and
(3.2).

The transformation factor for the load is (see Equation (6.22)):

j u(x 1) q(x. )dx
K, = ( ) (B.36)

jq(x, t)dx

x=0

In case of concentrated load acting in the system point Equation (B.36) can be written
as:

u(;;,tt)) q(x,t)dx |
K, == = LuP 0000 (B.37)

* P u,
jq(x,t)dx ’
x=0

x=L

since Iq(x,t)dx =P and ¢q(x,t) =0 when x # L
x=0

By means of Equation (B.32) the expression for transformation factor in Equation
(B.36) in case of a uniformly distributed load can be written as:

Kp =" (B.38)
J.q(x, t)dx

x=0
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The expression for the transformation factor for the internal resisting load when
having an ideal plastic material is (see Equation (6.42)):

1 x=L .
Ky =—— j Mu"(x)dx (B.39)
m~s x=0

The curvature u"(x) is zero everywhere in the beam except in the plastic hinge where
the moment has a known constant value. Equation (B.39) can be written as:

1 0" M 1 0"
K= jMu"(x)dx = R—’” ju"(x)dx (B.40)

m”"s 0 m”"s 0

The integral of the curvature in the hinges is one way to express the change of the
angle in this point.

0+
ub

[u"(x)dx =u'(0) = = (B.41)

0"

The maximum internal resistance R, is equal to the external load needed to create the

mechanism, P, , (or g, LL for uniformly distributed load) (see

Figure B.3). The moment in the system point is equal to the plastic moment, M ;.

B.3.1 Case (3.1)
For a cantilever beam subjected to a concentrated load (see
Figure B.3.a) the plastic moment is:
M, =P,L (B42)

Equation (B.37) gives the transformation factor for the internal resisting force for case

(3.1).
K, =1.0000 (B.43)

Equation (B.42) and (B.44) inserted in Equation (B.40) gives the transformation
factor for the internal resisting force for case (3.1).

M, P.Lu P
K = [l yde =2 ”T =/~ =1.0000 (B.44)
mls 0" m”s pl
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B.3.2 Case (3.2)

For a beam subjected to a concentrated load (see

Figure B.3.b) the plastic moment is:

— qplL2

Tk (B.45)

M

Equation (B.38) gives the transformation factor for the internal resisting force for case
(3.2).

x=L
J- . q(x9 t)dx x=L X 1
/(P:xj;L—:—quozx:E (B.46)
Iq(x, t) dx T =
x=0

Equation (B.42) and (B.45) inserted in Equation (B.40) gives the transformation
factor for the internal resisting force for case (4.2.5).

o qpl’
ux)ydx=——m—=——"—>=— (B.47)
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APPENDIX C Comparison with transformation
factor according to Granstrom and
Balazs

Granstrom (1958) and Balazs (1997) have used a different definition of the

transformation factor for the internal resisting load than used in this report. The
definition for the ideal plastic case according to Granstrom and Balazs (here called

kg'P)is:

-1
K¢ =%:{0%0"(Z )d¢ (C.1)
where { = x/L relation between coordinate x and the length of the beam
M({) moment
n) =%Z) relation between deflection and the deflection of the system
S point
M. moment in section of comparison (often coinciding with the

system point)

In order to make it possible to compare the two different expressions for the
transformation factor the expression of &, in ideal plastic case (see Equation (6.42))
can be rewritten as:

x=L 7=1
K, = % j M (x)u" (x)dx = RL j M(x)u"(x)dd =

mus x=0 mus {=0

M(x)=M({)L ] 7
= =—— [M@)n"()d
{u,,(x):”,,(z)us /Lz} RmLZL (n"(Q)dd

(C.2)

The relation between «¢'” and k, is then:

15 M)
8([0 u T

Ke - P ) = (C.3)
RLJ OM(Z)O &)d¢

Kk

Equation (C.3) can be rewritten as:
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M.
K, =k'"* BiT (C.4)

The equation of motion used in this report, for a SDOF system with ideal plastic
material, is:

K,Mi +k,R =K,P(t) (C.5)

The differential equation according to Granstrom (1958) and Balazs (1997) can by use
of Equations (C.4) and (C.5) be written as :

K, Mii, +k]'” B% =K, P(1) (C.6)
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APPENDIX D Input data in analyses

The cross-section of the reinforced concrete beam, shown in Figure D.1, is chose in
order to fulfil minimum requirements in the Swedish shelter regulation described in
Section 12.3.

F A! - area of reinforcement in compression zone

Z

h=0.35m d=030m

b=1.0m

J; A, - area of reinforcement in tensile zone

Figure D.1  Cross-section of reinforced concrete beam.

Equation (9.1) gives the limitations of the amount of reinforcement and for this beam
the amount of reinforcement close to p = 0.30% are wanted. For this amount the total

area of reinforcement A, is:
A, = pbH =900 mm* (D.1)

In order to have even values ¢l6 5200 is used (meaning reinforcement bars of
diameter 16 mm with spacing 200 mm) the total area of reinforcement per meter is:

A, =1005mm?/m (D.2)

and by use of Equation (9.1) the amount of reinforcement is calculated.

A
p=2=0335% (0.14%<0.335% <1.1%) (D.3)

The beam is double reinforced (meaning that reinforcement bars are placed both in
tensile and compression zone). The area of the tensile steel is chosen to be the same as
for the compressed steel.

A =1005mm’/m (D.4)
The support moment is assumed to be equal to the maximum field moment.

M. =M, (D.5)

The characteristic values of the material properties of interest for concrete C25/30 and
reinforcement steel BSO0OB are shown in Table 7.1 and Table D.2 respectively.
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Table D.1  Material properties for concrete quality C25/30

C25/30

Compressive strength, f,, 24 MPa

Tensile strength, f,, 1.7 MPa

Modulus of elasticity, E, 31 GPa

Table D.2  Material properties for reinforcement quality B500B

B500B

Yielding stress, f, 500 MPa

Modulus of elasticity, E, 200 GPa

D.1 Moment capacities for the different stadiums

In order to get the material response curve (load-deflection curve) the values of the
load when the material cracks P, , when the reinforcement starts to yield P, and the

cr?

ultimate load P, must be calculated. In case of uniformly distributed load
P,=q,W, P,=q, and P, =g, [L. Due to the Swedish shelter regulations all

C

calculations are preformed in ultimate limit state.

In Section 12.2.2 the relation between the design and characteristic values of the
material properties in ultimate limit state for concrete and steel are presented as:

fi
fy=—"— D.6
"oy, (D.6)
E
E, =—2* D.7
oy, ®-7)
S =091, (D.8)

where the values of the safety factors (here meaning 77, and ), ) are 1.0 in all cases

except when calculating the design value of the strength parameters for concrete, then
y,7 equals 1.2. The compression strength and the modulus of elasticity of the
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concrete are multiplied with a factor 1.1 and 1.2 respectively in case of accidental and
dynamic load.

S =11, (D.9)
. 12[F
ja}lznamlc = ,7y yck (D 10)

¢ Concrete C25/30:

fo, =11 St ﬂ.l(ﬁ]:zz MPa
1.2 1.2

fu = {2’< =1.417 MPa

E, =12E, =37.2 GPa

* Reinforcing steel B500B:
S« =090, =0.90500 =450 MPa
E,=E,k =200 GPa

The factor a is defined in Equation (12.13) and is in this case: a= 200 =5.38

37.2

D.1.1 Stadium I

Due to the crack criteria in Section 12.2.1.4 the beam remains uncracked as long as
the maximum value of the tensile stress in the most exposed cross-section fulfils

o, <f7b (D.11)

meaning that the cross-section cracks when:

Ot = o (D.12)

{

where ¢ is 1.0 and the flexural strength is calculated as:
S =k, (D.13)
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0.4

i

Applied on this example the value of the flexural strength is:

k=0.6+ and 1.0<k<145

04 =1.12

4/0.35 (D.14)

£, =1.120.417=1.59 MPa

k=0.6+

By use of Equation (D.12) the value of the tensile stress when the cross-section cracks
can be calculated.

o, =da =27 2159 \pa D.15
ct, Z 1.0 ( )

The equivalent area for a cross-section in stadium I is calculated as in
Equation (12.12) and for a rectangular cross-section with reinforcement in the
compressed zone the equation can be written and calculated as:

A, =blh+(a-14 +(a@-DA, =
=0.35+(5.38-1)000500° +(5.38 -1) 00500 ™° = (D.16)

=0.359 m*

The distance to the centre of gravity, measured from the most compressed edge of the
cross-section is, due to symmetry:

Xeg =5 = =0175m (D.17)

The moment of inertia for the rectangular cross-section is calculated by means of
Equation (12.23).

3
I, :%+(G_I)AS(XCG _d’)z +(a_1)As(d_xCG)2 =

_ 0.35°

+(5.38-1)005107(0.175 - 0.05)" + (D.18)
(5.38-1)0005007(0.3-0.175)" =
=3.71007 m*

By rearranging the terms in Equation (12.22) and using the concrete stress in the
tensioned edge for which the cross-section cracks o (see Equation (D.15)) the

ct,max
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moment for which the cross-section cracks M can be calculated. The distance z

from the neutral layer to the tensioned edge is z =h —x .

ay = Zeoms O, 1.5900°03.71007° _
¢ z 0.35-0.175 (D.19)

=33.64 kNm

The load for which the cross-section cracks can now easily be calculated, however,
the expressions depend on boundary conditions and type of load.

D.1.2 Stadium II

Once the beam has cracked the calculations is made in stadium II as long as no
yielding take place in the material.

A :

cc

x| OE77877087/87757

S

Fictive concrete stress 0, (z,) =

Figure D.2  Strain and stress distribution in cracked rectangular cross-section of
reinforced concrete subjected to pure bending.

For cross-section subjected to pure bending the neutral layer coincides with the centre
of gravity of the equivalent cross-section.

X =Xeg (D.20)

By use of Equation (12.28) the distance from the most compressed edge to the neutral
layer is calculated.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 161



x2 +%((0’ —I)A; +0’AS)X —%((O’ _I)A; Dj'+aAs |]:1)

=
e,

\/((a—l)A; +ad, T +%((a—l)A; ' +ad, ) =

X =

b
_ (5.38-1)1005007 +5.38 0100500 .\ (D.21)
1.0

\/[ (5.38-1)1005007° +5.38 100510 Jz .\
1.0

20005007°
=
=0.0517 m

5.38-1)[0.05+5.38[0.3) =

The equivalent area of the cracked cross-section is calculated by means of
Equation (12.14).

A, =A, +(a@-1)4 +a4, =b & +(a-1)4' +ad, =
=1.0[.0517 +(5.38 1) 1005007 + (D.22)
53800005007 =0.0615 m’

By use of Equation (12.29) the moment of inertia for the cracked cross-section is
calculated.

3
1 =2 (@ -)Ae-a) +ad (d-x) =

_ 0.0517°

+(5.38-1)0005007°(0.0517 - 0.05)" + (D.23)
5.380005007°(0.3-0.0517)" =
=3.79007 m*
It is assumed that the steel will start to yield before concrete does (always assumed

even though it might not be true). When the yielding starts in the reinforcement bars
the stress in the steel is equal to the yield stress.

o.=f, (D.24)

the concrete is correct.
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By use of Equation (12.31) the fictive concrete stress at the steel level, 0, (z, ), when
the reinforcement starts to yield can be calculated.

o
O(z)=—===——=83.7 MPa (D.25)
’ a 8

By rearranging the terms in Equation (12.19) and using the concrete stress at the steel
level when the steel starts to yield (see Equation (D.25)) the moment for which the
yielding starts M, can be calculated. The distance z, from the neutral layer to the

steel levelis z, =d —x.

_0o.(z), 83.700°3.79007" _

spl _
. 0.3-0.0517 (D.26)

=127.8 kNm

M

The load for which the steel starts to yield can now easily be calculated, however, the
expressions depend on boundary conditions and type of load. For a beam subjected to

D.1.3 Stadium III

The stress and strain distributions, when using simplified stress block, in the cross-
section for stadium III are shown in Figure D.3 where @ and £ are 0.8 and 0.4

respectively.

P A,

cc

x| D787/

Figure D.3  Strain and stress distribution in cracked rectangular cross-section of
reinforced concrete subjected to pure bending and where the maximum
value of the concrete strain in the compressed edge is reached. (When
using simplified stress block).

The tensile steel is assumed to have a plastic behaviour when the ultimate state is
reached meaning that the strain in the steel &, is higher than the value of the strain

when yielding starts &, :

£ 2, (D.27)
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As soon as the value of the strain when yielding starts &, is reached in the

reinforcement bars the stress in the bars g is equal to the yield stress £, :

g, =f (D.28)
By means of Hook’s law the force F| in the steel is calculated as:

F. =f,4, =45000° 0005007° =452.25 kN (D.29)

The reinforcement in the compressed zone is assumed not to yield and has therefore
elastic behaviour.

o, =E, & (D.30)

Where the strain in the compressed steel & is calculated in the same way as &, in

Equation (12.32). The ultimate concrete strain &£, is reached in the compressed edge.

£ (D.31)

By means of Hook’s law the force F in the steel is calculated as:

Feo =g w o =5 &= o -

X
=20000° w&s 007 0005007 = (D.32)
X
=703.5-217 1
X

The resulting force in the compressed concrete is calculated by use of Equation
(12.38).

F =1 b =2200°0.00.8x =17600 & kN (D.33)
Horizontal equilibrium conditions gives:
FC + FS" = FY

35.175
X

17600x° +(703.5-452.25)x —35.175=0

2
= 251.25 N 251.25 +35.175 —0.0381m
27600 27600 17600

17600x +703.5 - =452.25

(D.34)
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Now control that the assumptions made in Equations (D.28) and (D.30) are correct.

The ultimate strain of concrete is £, =3.5007 and the steel strains are calculated by
use of Equation (12.37).

_d-x _ _03-0.0381

6? gcu
‘ X 0.0381

3.5007° =24.0 %o (D.35)

,_x—d' 0.0381-0.05
& = g =—__-- 7

' 3.5007 =-1.09 %o (D.36)
x ¢ 0.0381

The yield strain in the steel is:
g, =——==L=——— =225 %o (D.37)

and it is seen that the assumptions made are correct.

By means of a moment equation about x, as in Equation (12.41), gives the value of
the ultimate moment capacity of the beam.
M, =08f, bO(d-04x)+¢ [E, U (d-d')=
=0.82200° 0.0 0.0381{0.3 - 0.4 [0.0381) +

(~1.09007)20000° 0005007 (0.3-0.05) =
=136.4 kNm

(D.38)

D.2 Load-displacement relations

D.2.1 Case(1.1)

In stadium I and II a reinforced concrete beam behaves elastically and the maximum
moment appears, in this case, in the middle of the beam and is calculated as:

PL 4M
M=—= o p="= (D.39)
4 L

The load for which the first crack occurs is then:

p _AM, _4D364
TL 2.5

=53.8 kN (D.40)

The reinforcement in the tensile zone starts to yield when the load is:

a4M,, 40278
Pspl = LP =

=204.5 kN (D.41)
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When having elastic response the stiffness K can be calculated as:

_48E]

K IE (D.42)
In stadium I the stiffness is:
48F I ) ’ 3. -
K, = I = 48037.200° 3.71100 =424.0 MN/m (D.43)

r 2.5°
Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is:

_48E.1, 48037.200°3.79007*
r 2.5°

= 43.3 MN/m (D.44)

1

The values of the midpoint deflection corresponding to P, and P, is calculated as:

,=F (D.45)

The midpoint deflection is than for load P, :

P 800°
u,, =_¢a = w =0.127 mm (D46)

and the midpoint deflection for load P, is:

_ Py _204.500°

u.
YK, 43300°

=4.72 mm (D.47)

The inclination of the load-displacement curve in between the occurrence of the first
crack and the ultimate state is calculated as:

P, -P - i
oo =P _ (2045 53~8)D0_3 =32.8 MN/m (D.48)
u, —u, (472-0.127)00

sp

cr

In stadium III, the ultimate state, the beam is a mechanism and for a simply supported
beam a plastic hinge is formed in the middle of the beam. The ultimate force is
calculated as:

_4M, 40364
P, = T

=2182 kN (D.49)

The relation between the load and displacement is shown graphically in Figure D.4.
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Load [kN]

O
@
O g

Plastic hinge

Seab el 5

0 1 2 3 4 5 6 7 8 9

Displacement [mm]

Figure D.4  Relation between load and displacement for case(1.1).

D.2.2 Case(1.2)

In stadium I and II a reinforced concrete beam behaves elastically and the maximum

moment appears, in this case, in the middle of the beam and is calculated as:

The load for which the first crack occurs is then:

_8M, _8[33.64

) =107.7 kN
L 2.5

L,

The reinforcement in the tensile zone starts to yield when the load is:

p - 8M, 80278

= = 409.0 kN

When having elastic response the stiffness K can be calculated as:

_ 384E]

K
50°

In stadium I the stiffness is:

g = 384E, 3841372 00’ 3.7100°°

. : - =678.4 MN/m
5L 502.5

(D.50)

(D.51)

(D.52)

(D.53)

(D.54)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is:
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384F I . ' 3. -
K, = Ay _384337.200° 3.7900 — 69.3 MN/m (D.5%)

507 5M2.5°

The values of the midpoint deflection corresponding to P, and P, is calculated as:

u=L (D.56)

u, == =—"""—_=0.159 mm (D.57)

and the midpoint deflection for load P, is:

_ Py _409.000°

u.
YK, 69.300°

=5.90 mm (D.58)

The inclination of the load-displacement curve in between the occurrence of the first
crack and the ultimate state is calculated as:

P, -P - 3
K' — spl cr — (4090 1077)D93 — 525 MN/m (D59)
u,, —u, (5.90-0.159)00

In stadium III, the ultimate state, the beam is a mechanism and for a simply supported
beam a plastic hinge is formed in the middle of the beam. The ultimate force is
calculated as:

p - 8M, 80364

= =436.4 kN (D.60)

The relation between the load and displacement is shown graphically in Figure D.5.
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Figure D.5  Relation between load and displacement for case(1.2).

D.2.3 Case(2.1)

In stadium I and II a reinforced concrete beam behaves elastically and the maximum
moment appears, in this case, at the supports and in the middle of the beam at the
same time and is calculated as:

PL SM
M=t o p=M (D.61)
8 L

The load for which the first crack occurs is then:

M .
p = 8M, _8D3.64

= =107.7 kN (D.62)

The reinforcement in the tensile zone starts to yield when the load is:

p - 8M, 80278

= =409.0 kN (D.63)

When having elastic response the stiffness K can be calculated as (Samuelsson,
Wiberg (1999):

_192E7

K T

(D.64)

In stadium I the stiffness is:
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_192E.1, _192037.200° 3.71007
K, = 3 - 3
L 2.5

=1696.1 MN/m (D.65)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is:

_192E.1, _192(37.2000° 3.79007* _ 1733
nT T s T 2.5 T (D.66)
MN/m

The values of the midpoint deflection corresponding to P, and P, is calculated as:

u=— (D.67)

u, =——=——=0.0635 mm D.68
“ K, 1696.100° (D.68)

and the midpoint deflection for load P, is:

_ Py _409.000° _

u
7K, 173.300°

2.36 mm (D.69)

The inclination of the load-displacement curve in between the occurrence of the first
crack and the ultimate state is calculated as:

P, P, (409.0-107.7)00°

K' = =
u,, —u, (2.36-0.0635)007

=131.2 MN/m (D.70)

In stadium III, the ultimate state, the beam is a mechanism and for a fixed beam
plastic hinge are formed at the supports and in the middle of the beam. The ultimate
force is calculated as:

p _8M, 80364

w =436.4 kN (D.71)

The relation between the load and displacement is shown graphically in Figure D.6.
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Figure D.6  Relation between load and displacement for case(2.1).

D.2.4 Case(2.2)

10

In stadium I and II a reinforced concrete beam behaves elastically and the maximum

moment appears, in this case, at the supports and is calculated as:

The load for which the first crack occurs is then:

12M :
p 12M, 123364

> =161.5 kN
L

The reinforcement in the tensile zone starts to yield when the load is:

P _ 12Mspl _ 12 D1278

= =613.5 kN

When having elastic response the stiffness K can be calculated as:

_ 384E]

K 7

In stadium I the stiffness is:

g = 384E, 3841372 a0’ 3.7100°°

. - . =3392 MN/m
L 2.5

(D.72)

(D.73)

(D.74)

(D.75)

(D.76)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is:
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_384E 1, 384037.200°3.79007
L 2.5°

=346.7 MN/m (D.77)

1

The values of the midpoint deflection corresponding to P, and P, is calculated as:

u=L (D.78)

u, == =—""—"_=0.0476 mm (D.79)

and the midpoint deflection for load P, is:

P 3
_ “spl _ 613.500 =177 mm (D80)

u. -
YK, 346.700°

The inclination of the load-displacement curve in between the occurrence of the first
crack and the ultimate state is calculated as:

P,-P - e
= bw B _ (6135 161.5)D0_3 = 2695 MN/m D)
u,, —u, (1.77-0.0476)00

In stadium III, the ultimate state, the beam is a mechanism and for a fixed beam
plastic hinge are formed at the supports and in the middle of the beam. The ultimate
force is calculated as:

p _16M, 16036.4
pl ~ L -

=872.9 kN (D.82)

The relation between the load and displacement is shown graphically in Figure D.7.
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Figure D.7  Relation between load and displacement for case(2.2).

D.3 Stress-strain relation

The material properties used as input in ADINA (2004) is the relation between the
stress and strain why these have to be calculated from the relations between load and
displacement in Section 7.1.1. It shall be observed that the method used here to
calculate the stress-strain relation corresponding to the load-displacement relation is
an approximate method. A static analyses made in ADINA (2004) will probably not
give a load-displacement curve equal to the one used when calculating the stress-
strain relation. In order to verify that the method used here give useful results a
comparison between the load-displacement curve used when calculating the stress-
strain relation and the resulting load-displacement curve from a static analyses made
in ADINA (2004) is made for each case.

Since the beam used in the FE analysis has a constant cross-section through the whole
analysis while the cross-section of the reinforced concrete will change the stresses
corresponding to the crack moment M., moment where yielding starts M, and the
ultimate moment M,; are calculated as shown in Figure D.8. In the SDOF- and FE
analysis the cross-section in Figure 7.2 is used and the moment of inertia is:

bk’ _1.000.35°
12 12

Ianalysis =] =

=3.57007° m* (D.83)
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the concrete beam beam used in the analysis
UCV
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sz)cr chr j chr Jcr: I 5
o-spl
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P - 1)517[ ’,/// 5 M?pl 5 Mspl o-vpl = ]p E
P ey £ |
Upl
p=p _4AM
o 5Mpl jMpl Upl - bth
Figure D.8  Stresses for the cross-section used in the analysis.
s _12M M : ’
gy = ——a L 6= 33.64 D02 6 =1.65 MPa (D.84)
bh® 2 bh 1.0[0.35
- 12M M 3
s = 2= 6= 1278 D02 6=6.26 MPa (D.85)
) bh 2 bh 1.0 [0.35
- 4AM 3
analysis = ZP’ _ 40364 DIZO =4.45 MPa (D.86)
’ bh 1.0[0.35

Since the value of the ultimate stress o, is lower than the value of o, the value of g,
is used as the maximum stress in the FE analysis.

For the reinforced concrete beam the moment of inertia will change as soon as the
first crack occurs (P=P,,). The relation between the load and the displacement for a
simply supported, reinforced concrete beam is principally shown in Figure D.9 and
the stiffness K; and K, are expressed as (according to Samuelsson and Wiberg
(1999)):

© = 384E.L,

R (D.87)
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384E.1

where /; and /;; are equivalent values of the moment of inertia for the reinforced cross-
section, for further information see Section 12.2.1.3. E, is the modulus of elasticity of
the concrete.

AP
P 1K' ﬂr 7
N - o o
Py [P : I P— f—
77 7

Figure D.9  Notations for material properties for load-displacement relation and
stress-strain relation respectively

The corresponding stiffness in the SDOF- and FE-analyses (with moment of inertia in
Equation (D.88)) is:

analysis __ 384E I
Kl Ly - 5L3 1

(D.89)

analysis __ 384E I
K, —Tf (D.90)

The stiffness in the analyses must be equal to the stiffness of the beam and Equation
(D.87) shall be equal to Equation (D.89) and Equation (D.88) shall be equal to
Equation (D.90).

384E,1 _384E.1 I

e E =E,~L (D.91)
5L 5L I
AE,] 384E.1 I

38 2 -38 < = E,=EI (D.92)
5L 5L I

The moment of inertia in stadium I and II and the modulus of elasticity for the
reinforced concrete beam is calculated in Appendix D and the modulus of elasticity
for the analysis can be calculated as:

I 0 371007 _

E =E -1 =37200 =386 GPa (D.93)
I 3.5700
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-4
E,=E, Ly _ 37.200° % =3.95 GPa (D.94)
I 5700

The strains corresponding to g, and 0, is calculated as:

analysis __ _ Ucr _ 165 DIOG _
g b g = o =0.043 % D.95
E, 38600 " (B.95)

analysis as 2 Dl 6
gspl = Epi = = 62610 =1.6 %o (D96)

v E, 3.9500°

The inclination of the stress-strain curve in between 0, and 0, is:

aspl _acr _ (626_165)[]106

E' = =
£, —€, (1.6-0.043)007

=2.99 GPa (D.97)

The strain corresponding to the ultimate stress o,; can be calculated as:

analysis __ au -0

£Pl - é‘u = gcr + E! ==
(D.98)
_ 6
=0.043007° + (4'42 9;;?))9']0 =0.98 %o

In Figure D.10 the input stress-strain relation used in ADINA (2004) is shown
graphically.

Stress [MPa]

‘ ‘
0o 02 04 0.6 038 “ 12 14
Strain [%o]

Figure D.10 Stress-strain relation used as input in FE analysis (ADINA (2004)), in
figure 0, represents the value of 0 ;.
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The resulting load-displacement relation found in static analyses for each beam and
loading case are presented in Figure D.11.

Output from static analyses in ADINA = =----- Input to SDOF analyses
250 500
200 B oo

Load [kN]
> Iy

S S

Load [kN]
w

(=3

S

%3
S

F——
- %)
1) =]
S 3

0 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Displacement [m] Displacement [mm]
500 1000

400 / - 800 /
300 600 / -
400 =

100 f 200 4

Load [kN]
o
S
=]
Load [kN]

T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Displacement [m] Displacement [m]

— ——

Figure D.11 Relations between load and displacements for SDOF and FE analysis.

The load-displacement curves used in the FE analysis have a more stiff behaviour
than the load-displacement curves used in the SDOF analysis. However, the
approximated values of the stress-strain relation used as input in the FE analysis are
assumed to be good enough.
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APPENDIX E Varying number of elements and
size of modulus of elasticity in FE-
analyses

In order to confirm that the number of elements used are enough and that the modulus

of elasticity is high enough in case of ideal plastic material different numbers and

values are used in the FE-analyses and the results compared.

In Figure E.1 it can bee seen that in case of linear elastic material it is enough to use

20 elements since the results are very similar to the results when 50 elements is used.

20 equally sized 2-node beam elements are thus used when having linear elastic
material.

0,12

——FEM 20 elements
T y T — - FEM 50 elements
5 0 1] 2|
-0,06

VAV,

Time [ms]

Displacement [mm]
(=]
/
\
—

-0,12

Figure E.1  Displacement-time curves when modelling beam with different numbers
of elements for case (1.1), P1=132 kN, t;=1 ms.

In Figure E.2 it can bee seen that in case of trilinear material it is enough to use 299
elements in case of concentrated load since the results are the same as the results

when 199 elements is used. It is hence also assumed that 300 elements are enough in
case of uniformly distributed load.
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20
16 /
12
——FEM 199 elements
— = FEM 299 elements

Displacement [mm]

0 T T T T T
0 5 10 15 20 25 30

Time [ms]

Figure E.2  Displacement-time curves when having different numbers of elements
forcase (1.1), B =4220 kN and t, =1 ms.

Due to limitations in ADINA (2004) ideal plastic material can not be modelled but in
order to imitate the ideal plastic behaviour a very high elastic stiffness is used instead.
Since the analysis, when having very stiff material, are computationally because very
small time steps are required in order to have enough convergence for a suitable
number of iteration, a sufficiently good value of the modulus of elasticity shall be
found. This is done by comparing results from analyses where different values of the
modulus of elasticity is used. In Figure E.3 it is seen that when having £ =5000 GPa
no noticeable vibrations occurs after the maximum value of the displacement is
reached. This behaviour is wanted since for ideal plastic material there will be no
vibrations when the maximum value of the displacement is reached, see Figure E.4.

20

d

NN

= = FEM E=200 GPa
———FEM E=5000 GPa

Displacement [mm]

IS

0 5 10 15 20 25 30

Time [ms]

Figure E.3  Displacement-time curves when having different values of the modulus
of elasticity for case (1.1), B, =4810 kN and t, =1 ms.
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max

Figure E.4  For ideal plastic material (a) no vibrations will occur after the
maximum value is reached but for elastic-plastic material (b) vibrations

will occur
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APPENDIX F Standardized shapes of deflection

In this Appendix the standardized shapes of deflections in from the FE analyses in are
shown together with the assumed shape of deformation used in the SDOF analyses.
Only the cases not shown in Section 7.2.3 are shown here.

F.1 Elastic range

[ —shapeof from FE analysis _— Assumed shape of due to theory of elasticity — Shape of defc from FE analysis — Assumed shape of due to theory of elasticity

Coordinate [m] Coordinate [m]

Standardized displacement |-]
o o
- 2 2
Standardized displacement [-]
o o

a) b)
Figure F.1  Standardized displacement along the beam in a) case (1.1) and b) case
(1.2) compared to the assumed shape of displacement in the SDOF
analyses.

0 0,5 1 L5 2 25 0 0,5 1 LS 2 25

Standardized displacement [-]
s
2

Standardized displacement [-]
s
2

a) .‘ b)
Figure F.2  Standardized displacement along the beam in a) case (2.1) and b) case
(2.2) compared to the assumed shape of displacement in the SDOF
analyses.

F.2 Elastoplastic range
In the elastoplastic range the assumed shape of deformation in the SDOF analyses is

not defined. However, it shall be in between the assumed shape in the elastic range
and the assumed shape in the plastic range.
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—— Shape of deformation from FE analysis
— - Assumed shape of

due to theory of plasticity

—— Assumed shape of deformation duc to theory of clasticity

Standardized displacement [-]

Figure F.3

o
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duc to theory of plasticity

Standardized displacement [-]

0 0.5

Coordinate [m]

s
o

04 4

b)

Standardized displacement along the beam in a) case (1.1) and b) case

(1.2) compared to the assumed shape of displacement in the SDOF

analyses.

—— Shape of deformation from FE analysis

— - Assumed shape of deformaton due to theory of plasticity

—— Assumed shape of deformation duc to theory of clasticity|
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Figure F.4

Shape of def
‘— - Assumed shape of

from FE analysis
due to theory of plasticity

—— Assumed shape of deformation due to theory of clasticity|

s ° s
2y = o

Standardized displacement -]
-

0 05

Coordinate [m]

b)

Standardized displacement along the beam in a) case (1.2) and b) case

(2.2) compared to the assumed shape of displacement in the SDOF

analyses.

F.3 Plastic range

Standardized displacement -]

Figure F.5

—— Shape of

from FE analysis _— = Assumed shape of

duc to theory of plasticity
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—— Shape of from FE analysis — = Assumed shape of ion due to theory of plasticity
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b)

Standardized displacement along the beam in a) case (1.2) and b) case

(2.2) compared to the assumed shape of displacement in the SDOF

analyses.
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APPENDIX G Beam equations for linear elastic

and ideal plastic material
In this appendix beam equations for case (1.1), (1.2), (2.1) and (2.2), shown in Figure
6.7, with linear elastic and ideal plastic material are derived. Analytical expressions

for the maximum value of the deflection for the beams subjected to characteristic
impulse loads are derived.

G.1 Simply supported beam subjected to concentrated load -
Case (1.1)

Beam equations for a simply supported beam subjected to a concentrated load, shown
in Figure G.1, are here derived for linear elastic and ideal plastic material.

|

L

5
|

|
o
|
Figure G.1  Simply supported beam subjected to concentrated load.

G.1.1 Linear elastic material

If the most stressed part of the cross-section is located at the distance z from the
neutral layer the maximum value of the moment can, in case of linear elastic material,
be expressed as:

M,=0- (G.1)

where ¢ is the stress and / is the moment of inertia.

The maximum value of the moment will appear in the middle of the beam and can in
case of a simply supported beam be expressed as (brought from elementary cases):

PL
o= e (G.2)

The maximum value of the internal resisting force is equal to the highest value of the

load. Equations (G.1) and (G.2) gives the expression for the maximum internal
resisting force in case of linear elastic material:
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_4M, 4dl

— G3
m max L ZL ( )

The expression for the midpoint deflection can be found in elementary cases and is:

3
u= PL (G.4)
48FE]
and the stiffness of the linear elastic beam K is:
P 48EFE]
K=—= G.5
u )5 G-5)

Using Table 9.1, Equations (G.3), (G.4) and the values of the transformation factors,
listed in Table 6.1, the equations for the simply supported beam with linear elastic
material, subjected to a concentrated load can be expressed as:

P =K &—K _40-1—2£I
¢ ) oozl zL

R 4ol | ML ML ol
[ = KK m :\/0.4857—1/ =0.402, [ — — G.7
o NTEEM KM zL \48E1 El z (G-7)

2P 2P PL
=< =(0.0417=<

(G.6)

umax Pc = < G8

(£ KK 48EI G8)
I IANL IAND

umax (]c) = = = < = 0207 - (G9)
VKoK VMK N0.4857 B8EIM EIM

G.1.2 Ideal plastic material

The maximum value of the moment is the plastic moment, M, and appears in the
middle of the beam, where a plastic hinge is assumed. In case of a simply supported
beam subjected to a concentrated load M, is (brought from elementary cases):

_P,L

M, ==

(G.10)

where P, is the value of the external load when yielding starts.

The maximum value of the internal resisting force is equal to the external load for
which yielding starts and can by means of Equation (G.10) be expressed as:
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R =P = rl (G.11)

Using Table 9.1, Equations (G.10), (G.11) and the values of the transformation
factors, listed in Table 6.1, the equations for the simply supported beam with ideal
plastic material, subjected to a concentrated load can be expressed as:

Mp[
P =K,R, =4 (G.12)
L
Ic = \/2KKPKMPRmumaXM = \/g & = 163 u (G13)
3\ L \ L
1’ 1L 1°L
umax (]c) = < = . =0.375 < (G14)
KpKyp2R,M  2/304M M M M

G.1.3 Summary of beam equations for case (1.1)
The beam equations derived in Section G.1.1 and G.1.2 are summarised in Table G.1 .

Table G.1 ~ Beam equations for a simply supported beam subjected to concentrated

load.

I. Linear elastic material

F)c :ﬁ
zL
I, = 0.4021/%£
El z
PL
u,,. (P)=0.0417—=
t
I
u,. (1,)==0.207—
N EIM
II. Ideal plastic material
p =4
‘ L
M  Mu
I, =163 [ .3
L
1°L
U (1,)=0375—=
M

pl
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G.2 Simply supported beam subjected to distributed load -
Case (1.2)

Beam equations for a simply supported beam subjected to a uniformly distributed
load, shown in Figure G.2, are here derived for linear elastic and ideal plastic
material.

v

L

Figure G.2  Simply supported beam subjected to uniformly distributed load

G.2.1 Linear elastic material

If the most stressed part of the cross-section is located at the distance z from the
neutral layer the maximum value of the moment can, in case of linear elastic material,
be expressed as:

I
M, =0~ (G.15)
z

where ¢ is the stress and / is the moment of inertia.

The maximum value of the moment will appear in the middle of the beam and can in
case of a simply supported beam be expressed as (brought from elementary cases):

PL
i (G.16)
8
where P is the value of the external load.

The maximum value of the internal resisting force is equal to the highest value of the
load. Equations (G.15) and (G.16) gives the expression for the maximum internal
resisting force in case of linear elastic material:

&M
R =P :—e[:@

G.17
m max L ZL ( )

The expression for the midpoint deflection can be found in elementary cases and is:
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_ 5PL

u= (G.18)
384E]
and the stiffness of the linear elastic beam K is:
P 384FE1
K=—-= 5 (G.19)
u 5L

Using Table 9.1, Equations (G.17), (G.19) and the values of the transformation
factors, listed in Table 6.1, the equations for the simply supported beam with linear
elastic material, subjected to a uniformly distributed load can be expressed as:

P =K " =K g—ﬂ
¢ ) oz zL

R 8al | 5MIL’ ML ol
I =K. K m_ =,/0.7875 — =0.801,|— — 21
‘ Kpomme W 2L \ 384EI VEI - (G.21)

2P 10P.I° PL’
10, = 0.0206—=

(G.20)

u,, (P)=—" = G.22

(F) KK 384EI (G.22)
I IA5L I

u, (1)= ¢ = ¢ =(0.129— (G.23)
VK oK e VMK 70,7875 B84EIM EIM

G.2.2 Ideal plastic material

The maximum value of the moment is the plastic moment, M ,, and it will appear in

the middle of the beam, where a plastic hinge is assumed, and can in case of a simply
supported beam be expressed as (brought from elementary cases):

P L
—
Mpl— g

(G.24)

where P, is the value of the external load when yielding starts.

The maximum value of the internal resisting force is equal to the external load for
which yielding starts and can by means of Equation (G.10) be expressed as:

R =P = pl (G.25)

Using Table 9.1, Equations (G.24), (G.25) and the values of the transformation
factors, listed in Table 6.1, the equations for the simply supported beam with ideal
plastic material, subjected to a uniformly distributed load can be expressed as:
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MI
P =k,R =8~ (G.26)

c KP"" m L
Ic = \/2KKPKMPRmumaXM = \/E & = 327 u (G27)
3\ L \ L
1’ 1L 1°L
U (1) = ‘ = =0.0938 —¢ (G.28)

KK 2RM  438M M

pl

G.2.3 Summary of beam equations for case (1.2)

The beam equations derived in Section G.2.1 and G.2.2 are summarised in Table G.2
below.

Table G.2  Beam equations for a simply supported beam subjected to uniformly
distributed load.

I. Linear elastic material
al
zL

1. =010, M
El z

PL
(P)=0.0260-¢

El

I

EIM

P.=4

3

u max

(1,)=0.129

u max

II. Ideal plastic material

P :8M"’
L

c

M lMumax
[ =327, [~
L

I1°L
(I,)=0.0938—¢
M

pl

u max
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G.3 Fixed beam subjected to concentrated load - Case (2.1)

Beam equations for a beam fixed in both ends subjected to a concentrated load, shown
in Figure G.3, are here derived for linear elastic and ideal plastic material.

'

L

Figure G.3  Fixed beam subjected to concentrated load

G.3.1 Linear elastic material

If the most stressed part of the cross-section is located at the distance z from the
neutral layer the maximum value of the moment can, in case of linear elastic material,
be expressed as:

L =0~ (G.29)

where ¢ is the stress and 7 is the moment of inertia.

The maximum value of the moment will appear in the middle of the beam and at the
supports and can in case of a beam, fixed in both ends, be expressed as (brought from
elementary cases):

PL
M, ey (G.30)

where P is the value of the external load.

The maximum value of the internal resisting force is equal to the highest value of the
load. Using this statement together with Equations (G.29) and (G.30) gives the
expression for the maximum internal resisting force in case of linear elastic material:

M
R =P :8 elzgil

G.31
m max L ZL ( )

The expression for the midpoint deflection can be found in elementary cases and is:

3
u=s ;JZLE[ (G.32)

and the stiffness of the linear elastic beam K is:
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K=£=1923E[
u L

(G.33)

Using Table 9.1, Equations (G.31), (G.33) and the values of the transformation
factors, listed in Table 6.1, the equations for the beam fixed in both ends with linear
elastic material, subjected to a concentrated load can be expressed as:

R 8al, _ 40l
—— =Ky ——— =——
2 2zL  zL

R gal | ML’ ML ol
I =K. K m_ =,0.3714 — =0..352,|— — G.35
‘ Kprmme W 2L \192E1 \ EI z (G.35)

(G.34)

2P 2PD PL
u, (P)=—"<=""<"=0.0104= G.36
(F) KK 192EI (G.36)
I [N [N
u, (1.)= ¢ = ¢ ~0.118=¢ (G.37)
VKoK e VMK N0.3714092EIM EIM

G.3.2 Ideal plastic material

The maximum value of the moment is the plastic moment, AM,,;, and it will appear in
the middle of the beam and at the supports, where plastic hinges are assumed if it is
assumed that the field moment equals the support moments. M,, is in case of a beam,
fixed in both ends, be expressed as (brought from elementary cases):

_P,L
pl 8

M (G.38)

where P, is the value of the external load when yielding starts.

The maximum value of the internal resisting force is equal to the external load for
which yielding starts and can by means of Equation (G.38) be expressed as:

R,=P,=—2" (G.39)

Using Table 9.1, Equations (G.38), (G.39) and the values of the transformation
factors, listed in Table 6.1, the values for the beam fixed in both ends with ideal
plastic material, subjected to a concentrated load can be expressed as:

M,
P = KR, =8~ (G.40)
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8M , Mu ]M Mu
Ic = \/ZKKPK RmumaxM 2 —£ = = 231 u (G41)
L

1’ I°L I1°L

u (1)= c =0.188—¢ 42
(L) = Kook p 2R M 2/3[8M M MM (G42)

G.3.3 Summary of beam equations for case (2.1)

The beam equations derived in Section G.3.1 and G.3.2 are summarised in Table G.3
below.

Table G.3  Beam equations for fixed beam subjected to concentrated load.

I. Linear elastic material

p =42
zL

I ~03521/IML g
E z

PL
(P)=0.0104
EI

I
JEIM

3

max

(1.)=0.118

max

II. Ideal plastic material

p =glu
L

M Mu,,
I, =231 |—
L

2
2L
(I)= 0.188—1

max

pl

G.4 Fixed beam subjected to distributed load - Case (2.2)

Beam equations for beam, fixed in both ends, subjected to a uniformly distributed
load, shown in Figure G.4, are here derived for linear elastic and ideal plastic
material.
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Figure G.4  Fixed beam subjected to uniformly distributed load

G.4.1 Linear elastic material

If the most stressed part of the cross-section is located at the distance z from the
neutral layer the maximum value of the moment can, in case of linear elastic material,
be expressed as:

M, =0 (G.43)

where ¢ is the stress and / is the moment of inertia.

The maximum value of the moment will appear at the supports and can in case of a
beam, fixed in both ends, be expressed as (brought from elementary cases):

_PL

== G.44
el 12 ( )

where P is the value of the external load.

The maximum value of the internal resisting force is equal to the highest value of the
load. Using this statement together with Equations (G.43) and (G.44) gives the
expression for the maximum internal resisting force in case of linear elastic material:

12M
R =P :—91:@

G.45
m max L ZL ( )

The expression for the midpoint deflection can be found in elementary cases and is:

3
u:3§&y (G.46)

and the stiffness of the linear elastic beam K is:

K= f _ 3843E[
u L

(G.47)
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Using Table 9.1, Equations (G.45), (G.47) and the values of the transformation
factors, listed in Table 6.1, the equations for the beam, fixed in both ends, with linear
elastic material, subjected to a uniformly distributed load can be expressed as:

R 1201, _ 60l
P =Ky =K —t=— G.48
c KP 2 KP 2ZL ZL ( )
;= R, 1201/ML3 4/%11 G.49
‘ e ,/K/M 384ET ez 9
2P, 2PL P
u, (P)=—<<"="<"_=0.00521-¢ (G.50)
KK 384EI EI
I IND 1AL
umax (Ic) = < = 00585 . (GSI)
K oK o NMK Jo 7617 BS4EIM EIM

G.4.2 1deal plastic material

The maximum value of the moment is the plastic moment, M,,;, and it will appear in
the middle of the beam and at the supports, where a plastic hinges are assumed, and
can in case of a beam, fixed in both ends, be expressed as (brought from elementary
cases):

L
M =2 (G.52)

where P, is the value of the external load when yielding starts.

The maximum value of the internal resisting force is equal to the external load for
which yielding starts and can by means of Equation (G.52) be expressed as:

16M ,
R,=P,= ; (G.53)

Using Table 9.1, Equations (G.52), (G.53) and the values of the transformation
factors, listed in Table 6.1, the equations for the beam, fixed in both ends, with ideal
plastic material, subjected to a uniformly distributed load can be expressed as:

c

16M Mu M Mu
I, = 2K KR, M = 2 |08 M 396 | MM (G 55
c KP m~" max 3 L L
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P, = KR, =16— (G.54)




I° I1°L I°L
z/lmax (IL) = < = < = 00938 < (G56)
KipKyp2R, M 2/306M M M M

G.4.3 Summary of beam equations for case (2.2)
The beam equations derived in Section G.4.1 and G.4.2 are summarised in Table G.4.

Table G.4  Beam equations for fixed beam subjected to uniformly distributed load.

1. Linear elastic material

3

u max

PL
(P) = 0.00521~
EI

I

EIM

(1.)=0.0585

u max

II. Ideal plastic material

c

M Mu,_
1. =3.26,|—2—m
L

I1°L
(I,)=0.0938—¢
M

pl

M
P =16—2
L

u max

194 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



APPENDIX H Tables of damage

In case of linear elastic material the relation between the impulse load factor y, and
pressure load factor ),, calculated as in Section 11.1.1, is shown in Table H.I.
Observe that some of the values also are shown in Table 11.1.

Table H.1  Relation between y, and y, for linear elastic material.

o | v | wenie
vy Pc n=0 n=1 n=2 g Ic n=0 n=1 n=2
1.01 1.444 41.13 64.15 1.01 4.144 6.813 8.525
1.05 1.324 8.491 11.17 1.05 1.959 3.177 3911
1.1 1.255 4.570 5.931 1.1 1.469 2.389 2.924
1.3 1.141 1.984 2.455 1.3 1.066 1.691 1.984
1.5 1.095 1.490 1.776 1.5 1.003 1.493 1.694
1.6 1.080 1.373 1.610 1.6 1.000 1.434 1.607
1.7 1.069 1.294 1.494 1.7 1.000 1.388 1.541
1.8 1.060 1.237 1.408 1.8 1.000 1.351 1.488
1.9 1.053 1.196 1.343 1.9 1.000 1.321 1.445
2.0 1.047 1.166 1.293 2.0 1.000 1.296 1.409
2.2 1.038 1.126 1.220 2.2 1.000 1.256 1.353
2.4 1.032 1.099 1.171 2.4 1.000 1.226 1.310
2.6 1.026 1.080 1.137 2.6 1.000 1.202 1.277
2.8 1.023 1.067 1.112 2.8 1.000 1.183 1.250
3 1.020 1.057 1.094 3 1.000 1.167 1.228
3.5 1.014 1.040 1.064 3.5 1.000 1.138 1.187
4 1.011 1.030 1.047 4 1.000 1.117 1.159
4.5 1.008 1.023 1.037 4.5 1.000 1.102 1.138
5 1.007 1.019 1.029 5 1.000 1.090 1.122
6 1.005 1.013 1.020 6 1.000 1.073 1.099
7 1.003 1.009 1.015 7 1.000 1.062 1.083
8 1.003 1.007 1.011 8 1.000 1.053 1.072
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Cp, | W=l 1 | rERIE
& i n=0 n=1 n= & 1, n=0 n=1 n=2
9 1.002 1.006 1.009 9 1.000 1.047 1.063
10 1.002 1.005 1.007 10 1.000 1.042 1.056
20 1.000 1.001 1.002 20 1.000 1.020 1.028
30 1.000 1.000 1.001 30 1.000 1.014 1.019
40 1.000 1.000 1.000 40 1.000 1.010 1.014
50 1.000 1.000 1.000 50 1.000 1.008 1.015
100 1.000 1.000 1.000 100 1.000 1.005 1.013

In case of ideal plastic material the relation between the impulse load factor ), and

pressure load factor y,, calculated as in Section 11.1.2, is shown in Table H.2

Table H2  Relation between y, and y, for ideal plastic material.

_P1 y]:I/Ic _I yP:P/Pc
& i n=0 n=1 n=2 & 1, n=0 n=1 n=2

1.01 10.05 441.8 587.5 1.01 50.73 67.67 76.13
1.05 4.583 42.87 56.25 1.05 10.76 14.34 16.14
1.1 3.317 16.571 21.58 1.1 5.763 7.688 8.645
1.3 2.082 4.454 5.569 1.3 2.452 3.269 3.678
1.5 1.732 2.756 3.330 1.5 1.800 2.400 2.700
1.6 1.633 2.385 2.839 1.6 1.641 2.188 2.459
1.7 1.558 2.137 2.508 1.7 1.529 2.039 2.286
1.8 1.500 1.961 2.270 1.8 1.446 1.929 2.154
1.9 1.453 1.831 2.094 1.9 1.383 1.8433 | 2.050
2.0 1.414 1.732 1.957 2.0 1.333 1.775 1.966
2.2 1.354 1.593 1.762 2.2 1.260 1.671 1.837
2.4 1.309 1.500 1.631 2.4 1.210 1.595 1.742
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| mELL R
& P, n=0 n=1 n= & 1, n=0 n=1 n=2
2.8 1.247 1.382 1.468 2.8 1.146 1.491 1.610
3 1.225 1.342 1.414 3 1.125 1.453 1.562
3.5 1.183 1.272 1.324 3.5 1.089 1.382 1.474
4 1.155 1.225 1.266 4 1.067 1.333 1.412
4.5 1.134 1.193 1.225 4.5 1.052 1.297 1.367
5 1.118 1.168 1.196 5 1.042 1.269 1.332
6 1.095 1.134 1.155 6 1.029 1.228 1.280
7 1.080 1.111 1.128 7 1.021 1.199 1.245
8 1.069 1.095 1.110 8 1.016 1.178 1.218
9 1.061 1.084 1.095 9 1.013 1.162 1.198
10 1.054 1.074 1.085 10 1.010 1.148 1.182
20 1.026 1.035 1.040 20 1.003 1.087 1.106
30 1.017 1.023 1.026 30 1.001 1.064 1.079
40 1.013 1.017 1.019 40 1.001 1.052 1.064
50 1.010 1.014 1.015 50 1.004 1.045 1.055
100 1.005 1.001 1.007 100 1.001 1.028 1.034
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APPENDIX I Calculations to example

When analysing cross-section in Chapter 7 a reinforced concrete cross-section with a
chosen value of the amount of reinforcement p=0.335% where used. Here the
minimum reinforcement du to the Swedish shelter regulations, see Réddningsverket
(2003) is used. Since only the amount of reinforcement is changed the material
properties are the same as used in Appendix D, where the beams used in Chapter 7 are
analysed.

I.1 Moment capacity and load-displacement relation

An estimated value of the required steel area in the tensile zone, according to
Engstrom (2001) is calculated as:

M
4= od (L.

where f;, is the yield stress in steel, 0.94d is an estimated value of the internal level arm
and M is the maximum moment in the beam, which, in case of a uniformly distributed
load applied on a fixed beam can be calculated as:

2
m=9L (1.2)
208

provided that it is assumed that the support moment M, equals the moment in the
midpoint M.

The estimated value of the required steel area in the tensile zone can now be
calculated as:

4 = ql’ _ 5000° [2.57
' 2080, [0.94 208@5000° 0.900.3

=160 mm” (13)

The minimum required amount of reinforcement is 0.14%, due to the Swedish shelter
regulations, Rdddningsverket (2003):

A
0=—20.14%
bld (1.4

= A4 . =014007 L =0.1400" 0.00.3 =420 mm’ )

s, min

In order to have even values of reinforcing steel ¢10s150is used, the total area of
reinforcement per meter is than:

A, =524 mm*/m (L.5)
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The same amount of reinforcement is assumed in the compression zone.
Al = A, =524 mm*/m (1.6)
The beam capacity is calculated in the same way as when analysing the beams used in

Chapter 7, see Appendix D, and since the calculations is very similar only calculated
values of interest are shown here, when analysing the beam used in Section 11.4.2.

I.1.1 Stadium I
The equivalent area for the cross-section in stadium I is:

A, =0.355 mm’ (L7)
and the moment of inertia for stadium I is:

I, =3.64007° mm* (1.8)
The moment when the first crack occurs in the beam is:

M, =33.1 kNm (1.9)

For a fixed beam subjected to a uniformly distributed load the value of the load
corresponding to the crack moment M., is (q,=P./L):

_12Mm,, _12033.100°

P, =158.6 kN (1.10)
L 2.5
The stiffness in the elastic range is:
K, =3332.0 MN/m (I.11)

and the midpoint deflection of the beam when the first crack occurs is:

u, =0.0476 mm (L12)

I.1.2 Stadium II
The equivalent area for the cross-section in stadium II is:

A, =0.0441 mm’ (1.13)
and the moment of inertia for stadium II is:

I,=2.1200" mm* (1.14)
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The moment when yielding starts in the steel is:

M, =68.0 kNm (1.15)

For a fixed beam subjected to a uniformly distributed load the value of the load
corresponding to the moment when yielding starts M, is (qspi=Psp/L):

_12M,  12068.000°

P = =326.3 kN .16
wl L 2.5 (1.16)

The stiffness, just before yielding starts, is:

K, =193.8 MN/m (1.17)
and the midpoint deflection when yielding starts is:

ug,, =1.68 mm (I.18)

The inclination of the load-displacement curve in between the occurrence of the first
crack and the ultimate state is:

K'=102.7 MN/m (1.19)

I.1.3 Stadium IIT
The height of the compression zone in stadium III is:

x =0.0288 m (1.20)
and the ultimate moment is:

M, =785 kNm (121)

For a fixed beam subjected to a uniformly distributed load the value of the load
corresponding to the ultimate moment Mp! is (q,=P,/L):

P _16M,, 16078.500°
! L 2.5

=502.4 kN (1.22)

The inclination of the load-displacement curve K’ is used up to the load P,; and the
deflection for load P, is:

u, =3.40 mm (1.23)
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I.2 Rotational capacity

The rotational capacity of a fixed beam subjected to a uniformly distributed load is
calculated as in Section 12.2.2.3. Since no shear reinforcement is used w, is zero «!

is calculated as in Equations (12.45) and (12.46) where A, =524 mm’,
f.=f,=450MPa, d =03 m, b, =b=1.0 mand f, =22 MPa.

_ AT, 52400 @s5000°
Yop O,  1.00.32200°

=0.03573 (1.24)

s

d=03m,b, =b=1.0 and f, =22 MPa.

e, is calculated as in Equation (12.46) where A, =524 mm’ f, =450 MPa,

o = A OF, 524007 [45000° _ =
b I, 1.000.32200° : (1.25)
=0.03573

Since w; must be larger than or equal to 0.05 w,=0.05 is used.

«,, 1s calculated as in Equation (12.47) where f,, =450 MPaand E_ =200 GPa.

3.5007
=0.8 =0.4870 (>
@ =003 5007 +450/(20000°) (>w) (1.26)

Factor A4 is then:

A=1+0.60, +1.7¢f 145 =
"0 Dhai 1.27)
- .9413

=1+1.700.05-14
0.4870

The use of not weld able, hot rolled reinforcement gives that the factor B is equal to
0.8and 4[B=0.810.9413=0.7530<1.7.

B=08 (1.28)

In Fel! Hittar inte referenskilla. the moment distribution in the beam is shown when

the mechanism is about to form and an expression for the distance /; ., from the

support to the location where the moment is zero is derived.
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Figure .1 ~ Moment distribution in beam subjected to uniformly distributed load
when mechanism is about to form (q=q,) and derivation of distance

[

0,support *

Factor C, calculated as in Equations (12.51) and (12.52), depends on the location of

the plastic hinge and the distance /; . 18:

[ =0.14645[L =0.14645[2.5=0.366 m (1.29)

0,support
The distance /; ;,,, is:
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2.5

ly o = === -0.14645[2.5=0.884 m (1.30)

0, fieldt

N | b

- lO,sup port

Factor C for the support and field are then:

C =100

support 0,support

/d =10[0.366/0.3=12.20 (1.31)

C s =7y 4y /d =7 0.884/0.3=20.63 (1.32)

0, field

Insert Equations (1.40), (1.41), (1.44) and (1.45) into Equation (12.42) and the available
rotational capacities for the plastic hinges are calculated:

6, 1 pon = 0.9413[0.8002.20007 = 0.0092 rad (133)
6, 1w =0.9413[0.8[20.6300 =0.0155 rad (1.34)

The required rotational capacity is calculated as shown is Section 12.2.2.3.

By means of Equations (12.62) and (12.53) the required plastic rotation capacity can
be calculated. M, in Equations (12.62) corresponds here to the moment where
yielding starts in the reinforcing steel, see Equation (I.15)..

0 _2u, Myl
pl,support
L 16E.1, (135)
_2031.0007° 68.000° 2.5 _ ‘
2.5 16(37.200° [2.1200™  (.0235 rad
0, e =28, o = 2[0.0235=10.0470 rad (1.36)

I.3 Rotational capacity for beam analysed in Appendix D

Since the same cross-section used in this example also where used when comparing
the SDOF analyses with FE analyses in Chapter 7 the analysis of the beam capacity is
found in Appendix D, see case (2.2).

The rotational capacity is calculated in the same way as in Appendix 1.2 therefore
only some interesting values and the results are shown here.

A =1005 mm?%, f, = f, =450 MPa, d =03 m, b, =b=1.0 mand f,, =22 MPa.

_ A0, _ 1005007 [450010°
ob, WY, 1.0[0.32200°

=0.06852 1.37)
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_ AOf, _ 1005007 [45000°

W, = = a); =
"o WO,  1.00.302200° ‘ (1.38)
=0.06852 (>0.05)
3.5007°
w,, =0.8 - +=04870 (>w) (1.39)
3.5007 +450/(20000° )
Factor A is then:

(7
A=1+0.60 +1.7¢) —1.4—— =

w,

0 068?2 (:49)
: =0.9195

=1+1.710.06852-1.4
0.4870

The use of not weld able, hot rolled reinforcement gives that the factor B is equal to
0.8and ALB=0.800.9195=0.74<1.7.

B=0.8 (1.41)
Factor C, calculated as in Equations (12.51) and (12.52), depends on the location of
the plastic hinge and the distance /; . » as in Appendix 1.2, is:

Lo suppore = 0.14645[L =0.14645[2.5=0.366 m (1.42)

The distance /; ;,,, , as in Appendix L.2, is:

=—-1 =——-0.14645[2.5=0.884 m (1.43)

lO,ﬁeldt 0,sup port 2

L 2.5
2
Factor C for the support and field are then:

C =100

support 0,support

/d =10 [0.366/0.3 =12.20 (1.44)
Craa =7y 0y /d =7 0.884/0.3=20.63 (1.45)

Insert Equations (1.40), (1.41), (1.44) and (1.45) into Equation (12.42) and the available
rotational capacities for the plastic hinges are calculated:

B, 1o = 0.91950.8(12.20007 =0.0090 rad (L46)
8, 1 pua =0.9195[0.820.630107 =0.0157 rad (147)

The required rotational capacity is calculated as shown is Section 12.2.2.3.
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By means of Equations (12.62) and (12.53) the required plastic rotation capacity can
be calculated. M, in Equations (12.62) corresponds here to the moment where
yielding starts in the reinforcing steel, see Equation (D.26).

0 _u, Myl
pl,support L 16E [
208.3007° 12117 800° 2.5 (148)
= : - — =~ =0.0132rad
2.5 16037.200° 3.7900
Hp,,ﬁe,d =2 H?p,,mppm =2[0.0132 =0.0264 rad (1.49)
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