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Design with regard to explosions 
 
Master’s Thesis in the International Master’s Programme Structural Engineering  
ULRIKA NYSTRÖM 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT 

When designing a construction to be able to withstand the high pressure caused by a 
shock wave simplifications can be used in order to facilitate the calculations. By 
literature studies simplified methods used to analyse beams subjected to dynamic 
loads are compiled and in some cases also compared with FE-analysis in order to 
verify the results. 

The method of transforming and reducing deformable structures into single degree of 
freedom system, giving calculations easy to handle, is discussed in this report. When a 
beam is simplified into a single degree of freedom system the beam is assumed to 
have a specific shape of deformation and therefore tabled beam equations can be used 
in order to estimate the capacity of the beam. The beam equations can be used when 
the load is either infinity short (impulse load) or infinity long (pressure load). In order 
to utilize these equations also for arbitrary load durations so called damage curves are 
used. The behaviour of the structure subjected to dynamic loads can also be analysed 
by using an equivalent static load, where the impulse load is substituted with a static 
load that will give deflections corresponding to the ones achieved with the impulse 
load. 

The simplified methods discussed above are valid for beams in general but since 
shelters often are made of reinforced concrete, which have a complex behaviour, these 
beams and their response to both static and dynamic loads will be studied more in 
detail. A short and brief review of the minimum requirements when designing shelters 
due to the Swedish shelter regulation will be done. 

 

Key words: Explosions, dynamics, impulse load, reinforced concrete, SDOF system, 
equivalent static load, damage curves 
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Konstruktion med avseende på explosioner 
 
Examensarbete inom civilingenjörsprogrammet Väg och vattenbyggnad 
ULRIKA NYSTRÖM 
Institutionen för bygg- och miljöteknik 
Avdelningen för Betongbyggnad 
 
Chalmers tekniska högskola 

 

SAMMANFATTNING 

Vid analyser och beräkningar av byggnader utsatta för explosionsartade laster kan 
förenklade handberäkningsmetoder användas. Genom litteraturstudier har några 
förenklade beräkningsmetoder studerats och sedan samlats i denna rapport. I vissa fall 
är resultat beräknade med hjälp av den förenklade beräkningsmetoden jämförda med 
resultat från FE-analys för att verifiera metoden. 

Balkar, och andra deformerbara kroppar, kan omvandlas till ett enfrihetsgardsytem 
som tillskrivs ekvivalenta egenskaper för att ge samma deformation som den 
deformerbara kroppen. När balken har omvandlats till ett enfrihetsgardsystem kan 
tabellerade, så kallade, balkekvationer användas för att direkt uppskatta balkens 
respons, dessa är dock begränsade till att bara vara applicerbara för laster som beter 
sig mycket likt antingen en idealisk impuls- eller steglast. Med hjälp av skadetabbeler 
eller skadekurvor kan också responsen för mer generella laster uppskattas. För att 
kunna utnyttja den för ingenjörer välbekanta beräkningsgången för statiska lastfall 
kan en ekvivalent statisk last beräknas utifrån det dynamiska lastfallet.  

De förenklade beräkningsmetoderna är generella och kan användas för olika balkar 
och materialtyper. Eftersom skyddsrum, och andra byggnader som dimensioneras för 
explosionslaster oftast är gjorda av armerad betong behandlas detta material mer i 
detalj. 

Användningen av de ovan nämnda förenklade beräkningsmetoderna kräver dock en 
viss förståelse av hur balkar utsatta för starka, dynamiska laster uppför sig i 
verkligheten. 

Nyckelord: Explosioner, dynamik, impuls last, armerad betong, enfrihetsgradsystem, 
SDOF-system, ekvivalent statisk last, skadekurvor 
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1  Introduction 

1.1 Background 

Explosions are accidental or intentional actions that need to be considered in the 
design of structures for various applications. Except from apparent cases, such as 
military installations and civil defence shelters, design with regard to explosions is 
required for instance in the processing industry and for tunnels. 

When designing a construction to be able to withstand the high pressure caused by a 
shock wave (for example shelters), simplifications can be used in order to facilitate 
the calculations.  

The methods used are rather well documented when having a linear elastic or ideal 
plastic material but shelters, and other structures exposed for shock loads, are often 
made of reinforced concrete which has a more complex behaviour. This makes the 
application of the methods more complicated and in order to keep the calculations 
easy to handle simplifications must be used. In practice, engineers usually not need to 
perform dynamic calculations why it is of interest to translate a dynamic load and its 
affects to a static load case giving similar response. 

 

1.2 Aim 

The aim of this thesis is to put together information about available design approaches 
for impact loading on structures in general and reinforced concrete structures in 
particular. 

It shall be described how structures can be designed for impulse loading by means of 
simple hand-calculation approaches and to examine the agreement between such 
simple methods and more advanced analyses like FE analyses. These methods and the 
corresponding calculation processes shall be carefully described and documented.  

The response of a structure subjected to a load also depends on the material behaviour 
and the difference in the response for linear elastic and ideal plastic materials shall be 
examined. 

 

1.3 Method 

Literature studies have been done in order to find, understand and compile different 
simple methods used when analysing the behaviour of structures exposed for transient 
loads. The agreement between such simple methods is investigated by comparing 
analyse results with the real behaviour, assumed to be found by using finite element 
method. The finite element analyses are made by means of the commercial finite 
element software ADINA (2004). Literature studies have also been made in order to 
get a deeper understanding of explosions, their appearance, laps and effects. 
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A beam with cross-section chosen according to requirements in the Swedish shelter 
regulations will be analysed. The capacity of the beam is calculated by means of the 
Swedish code BBK 04, see Boverket (1994), and directions in the Swedish shelter 
regulations, Räddningsverket (2003).  

 

1.4 Limitations 

The methods described in this thesis, used in order to simplify analyses of structures 
subjected to transient loads, can be used on different types of deformable structures. 
However, only the application on beams is shown in this thesis. 

Complex material behaviour leads to complex calculations and expressions why only 
idealized material behaviours; linear elastic, ideal plastic and trilinear material 
respectively, is used here. When analysing concrete beams the effects of temperature, 
creep and shrinkage is not taken into account. 

Explosions and their effects is a huge subject which requires long time to fully 
understand. Due to the limited time and in order to keep this scope within reasonable 
limits only explosions in air and the transient loads caused by them are discussed in 
this thesis. Secondary effects from the explosions such as collapse of nearby buildings 
are also not taken into account. 

 

1.5 Outline of the report 

The outline of the report can be divided into basic theory (Chapters 2 to 5), design 
methods (Chapters 6 to 11) and application of the design methods (Chapter 12).  

In Chapters 2, to 5 basic theory of explosions in air, material responses, dynamics and 
solutions methods for differential equations are shown in order to facilitate the 
understanding for the rest of the report.  

Since analyses of the response of beams subjected to dynamic loads requires a good 
knowledge of dynamics and heavy calculations, not manageable to perform by hand, 
it is of interest to simplify these calculations. In Chapter 6 it is discussed how the 
response of beams subjected to dynamic loads can be calculated by transforming the 
beam to an equivalent single degree of freedom system (SDOF system) which will 
achieve the same displacement as a prescribed point in the beam, the so called system 
point. When transforming beams to equivalent single degree of freedom systems 
transformation factors for the load, mass and the internal force are used. These are 
derived for linear elastic and ideal plastic material respectively In case of trilinear 
material the transformation factors are not derived instead it is discussed how the 
transformation factors for linear elastic and ideal plastic material can be used in order 
to transform beams with trilinear material behaviour, for example reinforced concrete 
beams, to equivalent single degree of freedom systems.  
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In Chapter 7 the response of a beam calculated by use of the method described above 
is compared with results from finite element analyses, which are assumed to give 
results close enough to the reality.  

The choice of transformation factors in case of trilinear material is not trivial and is 
further discussed in Chapter 8 where also the FE models used in Chapter 7 are 
discussed. 

Characteristic pressure and impulse loads are two idealized loads which are defined 
and discussed in Chapter 9. Here also expressions for the maximum displacement for 
single degree of freedom systems and to beams equivalent single degree of freedom 
systems are derived. 

When calculating the response of a beam subjected to a dynamic load differential 
equations have to be solved for each time step in the analysis. Even though the use of 
equivalent single degree of freedom systems simplifies the calculations a lot it is very 
hard to perform results for a general load case without use of computers.  

The response of a general impulse load acting on a beam or single degree of freedom 
system can be calculated by replacing the impulse load with an equivalent static load. 
The expressions for the, to the impulse load, equivalent static load is derived and 
shown in Chapter 10. 

In case of a general load, somewhere in between a characteristic impulse and pressure 
load, the response of a single degree of freedom system can be estimated by use of 
either tables of damage or damage curves. In Chapter 11 the values in the tables of 
damage are calculated and the corresponding damage curves are shown for linear 
elastic and ideal plastic material. It is also discussed and shown how these can be used 
in practice. 

Concrete is a complex material and therefore also the response of reinforced concrete 
beams are complex. In Chapter 12 the behaviour of a reinforced concrete beam 
subjected to dynamic loads is discussed. 

In Chapter 13 conclusions and ideas on further investigations are shown. 
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2 Explosions 
Here only a very brief review of explosions and their resulting shock waves are 
shown. For more and detailed information about this subject the reader is referred to 
for example Räddningsverket (2004). 

When a charge detonates in the air a sphere with very high temperature and pressure 
will form. This sphere will expand very fast and is spread as a shock wave from the 
centre of detonation. The temperature and the pressure will decrease with increased 
distance from the detonation centre, see Figure 2.1 below. 

 

Figure 2.1 Schematic figure for detonation in air. 

An idealized shock wave is shown in Figure 2.2 where the different phases can be 
seen. The shock front gives an instantaneously increase of pressure (and temperature) 
and is followed by the compression and negative phase. The meaning of the phases, 
and the devastation they can cause, are illustrated in Figure 2.2.  

 

 

Figure 2.2 Idealized shock wave. 
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Figure 2.3 House exposed to shock wave. Based on NATO (1996). 

When analysing buildings exposed for shock waves the transient load is often even 
more idealized than the one shown in Figure 2.2. In analyses made in this report the 
transient loads are assumed to have a simplified appearance, see Figure 2.4 where P1 
and t1 is the maximum value of the load and the duration of the load respectively. The 
negative phase is not taken into account and the load is often assumed to be triangular 
in time. 

 

Figure 2.4 Idealized transient load caused by explosions used in this report. 

When a bomb detonates close to a reflecting surface the intensity and the spreading of 
the resulting shock wave will be affected. For an idealized case, where the reflecting 

1P  

1t  
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surface is assumed not to absorb any energy, the shock wave spreading close to the 
surface will have twice the energy of a shock wave spreading in the air without any 
nearby reflecting surfaces as shown in Figure 2.5. This can be explained by the fact 
that half the energy amount is prevented from spreading in its natural direction, 
instead the energy is reflected. 

 

Figure 2.5 Explosion in air and close to reflecting surface respectively. Based on 
Räddningsverket (2004) where the notation W represents the size of the 
charge. 
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3 Materials 
The response of a loaded structure is highly dependent of the material and its 
behaviour. In this report only idealized material behaviour are discussed; linear 
elastic, ideal plastic and a trilinear material. For ideal plastic and trilinear behaviour 
the fibres in the loaded structure can yield, meaning that the theory of elasticity is not 
applicable. In order to analyse a structure with plastic behaviour theory of plasticity 
and plastic hinges (further discussed in Section 3.2) are used in order to predict the 
response. 

 

3.1 Material responses 

3.1.1 Linear elastic material 

In case of linear elastic material the stress σ is linear proportional to the strain ε in 
compliance with Hooke’s law: 

εσ ⋅= E  (3.1)

where E is the modulus of elasticity. A principle relation between stress and strain for 
a linear elastic material is shown in Figure 3.1. 

 

Figure 3.1 Principal relation between stress and strain for a linear elastic 
material. 

The internal resisting force R in a structure subjected to a load will thus be linear 
proportional to the displacement u, i.e.: 

uKR ⋅=  (3.2)

where K is the stiffness of the structure. A principle relation between the internal force 
and the displacement for a linear elastic material is shown in Figure 3.2. 

ε  

σ  

E  
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Figure 3.2 Principal relation between internal force and displacement for a linear 
elastic material. 

The maximum value of the internal force in a structure with linear elastic material is: 

maxm uKR ⋅=  (3.3)

where umax is the maximum value of the displacement. When the load is removed the 
structure will return to its unloaded position. 

 

3.1.2 Ideal plastic material 

The relation between stress σ and strain ε for an ideal plastic material is shown in 
Figure 3.3 where σy is the yield stress. 

 

Figure 3.3 Principal relation between stress and strain for an ideal plastic 
material. 

As seen in Figure 3.3 no deformations will occur until the stress is higher or equal to 
the yielding stress but as soon as the yield stress is reached and deformation starts the 
stress in the structure equals the yielding stress. 

The internal force R in a structure, with ideal plastic material, subjected to a load P 
can now be expressed as: 

mRR
PR

=
=

0orfor
0also iffor

≠≥
=<

uRP
uRP

m

m  (3.4)

where Rm is the maximum value of the internal force. A principle relation between the 
internal force and the displacement for an ideal plastic material is shown in Figure 
3.4. 

σ  

ε  

yσ  

u  

R  

K  
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Figure 3.4 Principal relation between internal force and displacement for an ideal 
plastic material. 

 

3.1.3 Trilinear material 

Reinforced concrete beams have a trilinear material response. This is further 
discussed in Chapter 12 but here the idealized behaviour of reinforced concrete beams 
is shown. The idealized load-displacement curve for a concrete beam is shown in 
Figure 3.5 where Rcr is the internal force when the first crack occurs in the beam and 
Rm is the maximum value of the internal force valid when the ultimate load level is 
reached. ucr and upl are the values of the displacement when the first crack occurs and 
when the ultimate load level is reached respectively. K is the stiffness before the first 
crack occurs and K' is the inclination of the curve in the range in between ucr and upl. 

 

Figure 3.5 Principal relation between internal force and displacement for a 
trilinear material. 

The internal force R in a structure, with trilinear material, subjected to a dynamic load 
P(t) can be expressed as: 

m

crcr

RR
uuKRR

KuR

=
−′+=

=
)(

)(for
)(for

)(for

tPR
RtPR

RtP

m

mcr

cr

≤
<≤

<
 (3.5)

where Rcr also can be written as: 

crcr uKR ⋅=  (3.6)
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crR  
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u

K ′  
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The trilinear material response can be divided into elastic, elastoplastic and plastic 
range as shown in Figure 3.6. 

 R 

uElastoplastic range Plastic range Elastic range 

 

Figure 3.6 The different ranges for a trilinear material. 

A reinforced concrete beam will have linear elastic behaviour until yielding starts. 
However, in this report linear elastic behaviour is assumed until the ultimate load is 
reached meaning that the stiffness of the beam in the range in between Rcr and Rm will 
change when the load increases, see Figure 3.7. This behaviour can be explained by 
the fact that more and more cracks will occur in the beam when the load increases.  

 

Figure 3.7 Stiffness in the elastoplastic range for a reinforced concrete beam. 

Consider a beam subjected to a transient load with maximum value P1 large enough to 
give the internal force a value R1. If the load is removed when Rcr<R1<Rm the beam 
will return to its unloaded position and the corresponding relation between the internal 
force and displacement is shown in Figure 3.8. 

21 KK >  for 21 RR <  

u

R  
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Figure 3.8 Response of a concrete beam when loading and unloading a force 1P . 

The beam is reloaded with a transient load with maximum value P2 and the internal 
force will now reach a value R2. If the beam still is in the elastoplastic range 
(Rcr<R2<Rm) and the load is removed again the response curve is as shown in Figure 
3.9. 

 

Figure 3.9 Response of a concrete beam when loading and unloading a force 2P . 

If, once again, a transient load is applied, this time with maximum value P3, big 
enough to reach the plastic range of the response curve (R3=Rm) and then the load is 
removed there are plastic deformations, see Figure 3.10. The stiffness when unloading 
is the same as the secant stiffness to the point (upl,Rm). As soon as the plastic range is 
reached the stiffness of the beam is constant, as long as the failure criterion is not 
fulfilled. 

u
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Figure 3.10 Response of a concrete beam when loading and unloading a force 3P . 

 

3.2 Theory of plasticity and plastic hinges 

In this section theory of plasticity and plastic hinges for beams with double symmetric 
cross-sections are discussed. Theory of plasticity, as well as theory of elasticity, 
assumes a linear strain distribution over the height of the cross-section.  

In the elastic range, when no fibres in the cross-section yield, Hooke's law is used as 
constitutive relation and the stress is linear proportional to the strain, see 
Equation (3.1). Therefore also the stress distribution will be linear distributed over the 
height of the cross-section in the elastic range. The stress and strain distributions in 
the elastic range for a cross-section in a beam subjected to pure bending are shown in 
Figure 3.11.  

 

Figure 3.11 Stress and strain distribution in beam subjected to bending (in elastic 
range). 

When the load applied to the beam, and consequently the bending moment inside the 
beam, has increases the outer, most stressed, fibres in the most strained section will 
reached the yield stress, see Figure 3.12.a. The maximum elastic moment has been 
reached and can be expressed as: 

u

R  

2K  

2u  

2R  
mRR =3

Plastic displacement 3u

Stress distribution σ  Strain distribution ε  Cross-section  Part of the beam  

M ( ) Ezz ⋅= εσ )(  ( )zε

z



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 
13

2h
I

M y
el

σ
=  (3.7)

where σy is the yield stress, I is the moment of inertia and h is the height of the cross-
section. 

For a rectangular cross-section the moment of inertia is: 

12

3bhI =  (3.8)

where b is the width of the beam. 

Inserting Equation (3.7) into Equation (3.8) the maximum elastic moment for a 
rectangular cross-section can be expressed as: 

6

2bhM yel σ=  (3.9)

If the load increases the elastoplastic range is entered and the stress will only be linear 
proportional to the strain in the part of the cross-section where yielding have not 
started, see Figure 3.12.b. The higher load the smaller elastic part and a proportional 
increasing curvature. 

Just before all fibres in the cross-section has yielded the ultimate value of the moment 
Mpl is reached. The case when the whole cross-section has yield is an idealized state 
where the strain-stress curve has an infinitely long plastic range see Figure 3.12.c. 
Since the elastic part of the cross-section is infinitely small just before all fibres yield 
the ultimate moment, according to Samuelsson, Wiberg (1999), can be expressed as: 

4

2bhM ypl σ=  (3.10)
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Figure 3.12 Stress and strain distributions in beam subjected to bending when a) 
yielding starts in the outer, most stressed, fibres, b) parts of the cross-
section (and fibres close to the cross-section) have yielded and c) the 
whole cross-section has yielded (idealized case). 

When the ultimate moment Mpl is reached in the most strained section almost all 
deformation occur here and in the very surrounding. The curvature is very large in this 
section while it is rather small in the rest of the beam. Since the length of the part with 
large curvature is very limited it can be assumed that all deformation takes place in a 
very small deformable element, a so called plastic hinge. The rest of the beam is 
assumed to be elastic and are therefore straight and the moment in the plastic hinges 
are assumed to be constantly equal to the ultimate moment Mpl. This reasoning is 
shown in Figure 3.13 for a simply supported and a fixed beam respectively. 
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Figure 3.13 Models with plastic hinges for a) a simply supported beam and b) a 
fixed beam. 

In case of simply supported beam only one plastic hinge is needed to create a 
mechanism and if the load increases even more the beam will undergo uncontrolled 
deformation.  

For a fixed beam, with constant capacity, yielding starts at the supports and for a 
certain load plastic hinges are formed here. Since no mechanism is formed yet the 
load can be increased and the beam now acts as a simply supported beam subjected to 
moment Mpl at the supports. If the load remains constant at this level unlimited 
deformations can, in theory, occur. However, when the load is increased yielding 
starts also in the middle of the beam and when all fibres in this section have yielded a 
plastic hinge is formed and the beam has become a mechanism, see Figure 3.13.b. 
This is further discussed below where also the expressions for the moment at the 
different stages are shown. 

For the fixed beam, subjected to a uniformly distributed load, the outer most stressed 
fibres at the supports will start to yield when the moment in this section is: 

curvature curvature 

model model 

Parts with yielding Part with yielding 

Plastic hinge Plastic hinges 

a) b) 
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12

2Lq
M el

el −=  (3.11)

where qel is the corresponding value of the uniformly distributed load and L is the 
length of the beam. 

 

Figure 3.14 Moment distribution in beam subjected to uniformly distributed load 
according to theory of elasticity ( elqq ≤ ). 

If the load is increased even more yielding zones will be formed at the supports and 
for a certain load qelpl plastic hinges have been formed in these sections and the 
moment is:  

12

2Lq
M elpl

pl −=  (3.12)

Due to the plastic hinges by the supports the beam now behaves like a simply 
supported beam subjected to support moments Mpl and the uniformly distributed load 
q if the load increases. The moment distribution is statically determinable. When the 
load increases even more the moment in the midpoint of the beam will reach the 
ultimate value Mpl and the beam is just about to form a plastic hinge in the midpoint. 
The moment in the midpoint is calculated by use of equilibrium conditions: 

plplmiddle MqLMM −==
8

2

 (3.13)

The uniformly distributed load q in Equation (3.13) is the load for which the 
mechanism is about to form and it is expressed as: 

2

16
L
M

qq pl
pl ==  (3.14)

q  

L  

8

2qL

12

2qL
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Figure 3.15 Moment distribution in beam subjected to uniformly distributed load 
when mechanism is about to form ( plqq = ). 
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4 Basic dynamics 
The term dynamics is used for theory of moving systems and can be subdivided into 
kinematics and kinetics. Kinematics is a pure geometrical description of the 
movement while kinetics describes the cause of the movement (forces). 

 

4.1 Kinematics 

The simplest form of motion of a particle is when the particle moves along a linear 
axis (the x-axis in Figure 4.1) and the position of the particle is described by a vector 
x(t) at time t. At time t+∆t the position of the vector is x+∆x. 

 x  
x  
t  

xx ∆+
tt ∆+  

 

Figure 4.1 Linear motion of particle. 

 

4.1.1 Velocity 

The velocity of a particle moving linearly can be derived by studying how fast the 
position of the particle is changing. At time t the particle has position x and at time 
t+∆t the position is x+∆x meaning that during the time interval ∆t the particle has 
moved the distance ∆x. The mean velocity during the movement from position x to 
x+∆x can then be stated as: 

t
xv

∆
∆=  (4.1)

Letting the time interval ∆t go towards zero the change of distance ∆x will approach 0. 
The mean value of the velocity will then approach a boundary value that is defined as 
the velocity of the particle at time t. The velocity of the particle is thus given by: 

x
dt
dx

t
xvtv

t
&≡=

∆
∆==

→∆ 0
lim)(  (4.2)

By definition the particle is moving in positive direction if the velocity is positive and 
vice versa. 
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4.1.2 Acceleration 

The acceleration of a particle that is moving linearly can be derived by studying how 
fast the velocity of the particle is changing. At time t the particle has position x and 
velocity v and at time t+∆t the position is x+∆x and the corresponding velocity is 
v+∆v meaning that during time interval ∆t the velocity of the particle has increased 
with ∆v. The average value of the acceleration can be stated as: 

t
va

∆
∆=  (4.3)

In the same way as when deriving the velocity of the particle the acceleration can be 
written as: 

x
dt

xdv
dt
dv

t
vata

t
&&& ≡=≡=

∆
∆==

→∆ 2

2

0
lim)(  (4.4)

When the particle is moving in the positive direction and the acceleration is positive, 
the velocity is increasing. A negative value of the acceleration gives retardation. If, 
instead, the particle is moving in the negative direction a positive value of the 
acceleration gives retardation and if the acceleration is negative the value of the 
velocity is increasing. 

 

4.2 Kinetics 

The response of bodies subjected to dynamic forces can be described by means of 
differential equations. Before deriving these equations of motions for dynamic loads 
the impulse of a load and the work performed by a load are defined. 

 

4.2.1 Definitions of impulse and work 

4.2.1.1 Impulse 

Even though static, constant loads often are used in analyses loads are often varying in 
time and in order to describe how these forces influences the motion of the structure 
the impulse is introduced. 

The impulse is defined as a step change in an object’s momentum. For a mass, M, 
with velocity, v, the momentum is: 

vMp ⋅=  (4.5)

At time t the impulse is I and at time t+∆t the impulse is I+∆I (see Figure 4.2) 
meaning that the increase of the impulse during time ∆t is ∆I. As mentioned above the 
impulse is defined as the change in the momentum and the increase of the impulse can 
therefore, by means of Equation (4.5), be written as: 
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vMpI ∆⋅=∆=∆  (4.6)

where ∆p is the change of the momentum during time ∆t and ∆v is the change of 
velocity during time ∆t. 

 

Figure 4.2 Load-time diagram where P  is the average value of the load in 
between time t  and tt ∆+ . 

The average value of the acceleration a  is defined in Equation (4.3) and together with 
Equation (4.6) the change of impulse during time ∆t can be written as: 

taMI ∆⋅⋅=∆  (4.7)

By use of the second law of Newton where the force P is defined as the product of the 
mass and the acceleration the average value of the force P is defined as: 

aMP ⋅=  (4.8)

By use of Equations (4.7) and (4.8) the change of impulse can now be written as: 

tPI ∆⋅=∆  (4.9)

giving: 

t
IP

∆
∆=  (4.10)

Letting the time interval ∆t go towards zero the change of impulse ∆I will approach 
zero as long as the impulse is not a characteristic impulse as shown in Figure 4.3. The 
meaning of a characteristic impulse is further discussed in Section 9.2. 

Time t

Load )(tP  

tt ∆+  t  

I∆  

I  

P  
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Figure 4.3 Characteristic impulse. 

The mean value of the force will then approach a boundary value that is defined as the 
force applied to the particle at time t. The force applied to the particle is thus given 
by: 

dttPdI
dt
dI

t
IPtP

t
⋅=⇔=

∆
∆==

→∆
)(lim)(

0
 (4.11)

The change of the impulse can now, finally, be written as: 

∫∫∫
∆+=

=

∆+=

=

∆+

=∆⇔=
ttt

tt

ttt

tt

II

I

dttPIdttPdI )()(  (4.12)

The impulse for a load is thus: 

∫
=

=

=
1

0

)(
tt

t

dttPI  (4.13)

where t1 is the time for which the load is removed. 

 

4.2.1.2 Work 

Work is a transfer of energy from one physical system to another, for example from a 
load to a structure. When there is no frictional force and a force acts on a body, the 
work done by the force is equal to the increase of the kinetic and potential energy of 
the body since all the energy expended by the exerting force must be gained by the 
body. However, in practice some energy will be lost due to friction and heat 
development. 

When a particle is at position x the work is Π and at position x+∆x the work 
performed by the external load is Π+∆Π (see Figure 4.4) meaning that the increase of 
work when the particle is moving the distance ∆x is ∆Π. 
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Figure 4.4 Load-distance diagram. 

The change of work, represented by the shaded area in Figure 4.4, is expressed as: 

x
PxP

∆
∆Π=⇔∆⋅=∆Π  (4.14)

where P  is the average value of the force within the distance ∆x. 

Letting the distance ∆x go towards zero the change of work ∆Π will approach 0. The 
mean value of the force will then approach a boundary value that is defined as the 
force causing the displacement x of the particle. This force is thus given by: 

dxxPd
dx
d

x
PxP

x
⋅=Π⇔Π=

∆
∆Π==

→∆
)(lim)(

0
 (4.15)

The change of the work can now, finally, be written as: 

∫∫∫
∆+=

=

∆+=

=

∆Π+Π

Π

=∆Π⇔=Π
xxx

xx

xxx

xx

dxPdxPd  (4.16)

The total work performed by a load P is thus: 

∫
=

=

=Π
maxxx

x

dxP
0

 (4.17)

where xmax is the total displacement caused by the load. 

 

4.2.2 Mechanical vibrations 

When deriving basic dynamic equations a body where the position can be defined by 
one coordinate is used. Such structure is said to have one degree of freedom and is 
also referred to as single degree of freedom system and abbreviated as SDOF system 
(compare with MDOF, Multi Degree Of Freedom system). The mass-spring system in 
Figure 4.5 is an example of a system with one degree of freedom. 

Distance x

Load P  

xx ∆+  x  

∆Π  

Π  

P  
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M  

 

Figure 4.5 Mass-spring system with single degree of freedom, (SDOF). 

The single degree of freedom system in Figure 4.5 represents a rigid mass, M, 
attached to a spring. In a rigid body there is no relative displacement between 
arbitrary points in the body. R is the internal force in the spring and C is the damping 
of the system. 

When a mechanical system is moved from its unloaded equilibrium position the 
internal forces (for most materials) endeavour to bring it back to equilibrium position. 
This behaviour causes oscillations. 

If vibrations take place in the absence of external forces but in presence of internal 
frictional forces the motion is referred to as damped free vibrations. If also the 
frictional forces are assumed to be absent the motion is called an undamped free 
vibration. If an external force is applied to the system the resulting motion is called 
forced vibration. The oscillation behaviour depends on whether the system is damped 
or undamped and if the vibrations are forced or not. 

The undamped vibration is a hypothetical case but is, in many cases, assumed to be an 
adequate approximation of the actual damped vibration experienced by real structures, 
which always have more or less internal friction. In this report the behaviour of 
damped systems are only briefly described since the influences of damping is 
neglected in the following chapters. 

 

4.2.2.1 Undamped free vibration 

Consider a mass attached to a spring as illustrated in Figure 4.6 where the mass can 
move only in the vertical direction and therefore has only one degree of freedom. The 
unloaded equilibrium position for the system is noted as ue and is the static 
equilibrium position when the dead weight is the only present load. u is the coordinate 
describing the distance from the unloaded equilibrium position to the current position. 
The mass M is attached to a spring with linear elastic behaviour with stiffness K. The 
stiffness factor K is equal to the force required to move the system a distance. The 
internal force R for a linear elastic system can be expressed as: 

KuR =  (4.18)
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Figure 4.6 Mass undergoing undamped free vibration. 

When the body is moved a distance u from the unloaded equilibrium position and then 
released, the system will undergo an undamped free vibration about the unloaded 
equilibrium position. The forces acting on the isolated body is shown in Figure 4.7 
where Mg is the dead weight of the system. 

Mg  

uM &&  

KuMg +  

 

Figure 4.7 Forces acting on the mass in Figure 4.6. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0=−+− uMKuMgMg &&  (4.19)

where u varies in time i.e. u=u(t). 

By rearranging the terms in the equation above the differential equation of motion for 
an undamped system with linear elastic behaviour is defined as: 

0=+ KuuM &&  (4.20)

Introducing the definition of the circular frequency MK=ω  Equation (4.20) can 
be written as: 

02 =+ uu ω&&  (4.21)

In a more general form the differential equation in Equation (4.20) can be written as: 

0=+ RuM &&  (4.22)
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where the expression for the internal force R is depending on the material behaviour.  

In expression (4.22) the internal force R is not necessarily given by a linear expression 
(such as Equation (4.18)) and generally it holds that R≠Ku. 

 

4.2.2.2 Undamped forced vibration 

Still neglecting the frictional effects, consider again the system shown in Section 
4.2.2.1. Now the system is subjected to an external dynamic load P(t) as shown in 
Figure 4.8. 

K  
K  

M  

M  

eu  

u  )(tP  

)(tP  
 

Figure 4.8 Mass undergoing undamped forced vibration. 

The forces acting on the isolated body is shown in Figure 4.9. 

Mg  
uM &&  

KuMg +  

)(tP   

Figure 4.9 Forces acting on the mass in Figure 4.8. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0)( =−+−+ uMKuMgtPMg &&  (4.23)

where the displacement u varies in time i.e. u=u(t). 

By rearranging the terms in the equation above the differential equation of motion for 
an undamped system with linear elastic behaviour subjected to a dynamic load is 
defined as: 
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)(tPKuuM =+&&  (4.24)

In a more general form the differential equation can be written as: 

)(tPRuM =+&&  (4.25)

where the expression for the internal force R is depending on the material behaviour, 
and again it generally holds that R≠Ku. 

 

4.2.2.3 Damped free vibration 

Using the same notations as in the case of undamped free vibrations (see Section 
4.2.2.1) but also taking the damping into consideration the differential equation of 
motion of a damped free system can be derived. 

The system in Figure 4.10 where the damping of the system is noted as C is studied. 
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Figure 4.10 Mass undergoing damped free vibration. 

When the body is moved a distance u from the unloaded equilibrium position and then 
released the system will undergo a damped free vibration about the unloaded 
equilibrium position. The forces acting on the isolated body is shown in Figure 4.11. 

Mg  

uM &&  

KuMg +  
uC &  

 

Figure 4.11 Forces acting on the mass in Figure 4.10. 
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Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0=−−+− uCuMKuMgMg &&&  (4.26)

where the displacement u varies in time i.e. u=u(t). 

By rearranging the terms in the equation above the differential equation of motion for 
a damped system with linear elastic behaviour is defined as: 

0=++ KuuCuM &&&  (4.27)

In a more general form the differential equation can be written as: 

0=++ RuCuM &&&  (4.28)

where the expression for the internal force R is depending on the material behaviour, 
and generally R≠Ku. 

 

4.2.2.4 Damped forced vibration 

Again consider the damped mass-spring system in Section 4.2.2.3 but now subjected 
to an external dynamic load P(t) as shown in Figure 4.12. 
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Figure 4.12 Mass undergoing damped forced vibration. 

The forces acting on the isolated body is shown in Figure 4.13. 
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)(tP  
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Figure 4.13 Forces acting on the mass in  

Figure 4.12. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero: 

( ) 0)( =−−+−+ uCuMKuMgtPMg &&&  (4.29)

where the displacement u varies in time, i.e. u=u(t). 

By rearranging the terms in the equation above the differential equation of motion for 
a damped system with linear elastic behaviour subjected to a dynamic load is defined 
as: 

)(tPKuuCuM =++ &&&  (4.30)

In a more general form the differential equation can be written as: 

)(tPRuCuM =++ &&&  (4.31)

where the expression for the internal force R is depending on the material behaviour, 
and generally R≠Ku. 

 

4.2.3 Beam vibrations 

The eigenfrequencies for a structure are the frequencies for which the structure will 
vibrate of its own accord when exposed to a perturbation. The shapes of the structure 
for the different eigenfrequencies are called eigenmodes where each eigenmode is 
related to one specific eigenfrequency.  

Three different mode shapes, for a simply supported beam, are shown in Figure 4.14 
where the first eigenmode corresponds to the lowest value of the eigenfrequency. 
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Figure 4.14 Eigenmodes for simply supported beam. 

Normally, when a beam is subjected to a dynamic load, the frequency will not 
coincide with the eigenfrequencies and therefore the shape of deformation will not be 
the same as any of the eigenmodes. However, the dominating shape of deformation is 
the first eigenmode but it is influenced by higher modes. SDOF systems have only 
one eigenmode and hence there are no influences from higher modes. 

Second bending mode 

Third bending mode 

First bending mode 
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5 Solution of equilibrium equations in dynamic 
analysis 

The equations of motion derived in Section 4.2.2.1 to 4.2.2.4 can mathematically be 
solved by analytical procedures. However, these standard procedures, proposed for 
solving general systems of differential equations, can be very expensive since heavy 
equations and calculation are required. Therefore the use of more effective methods is 
motivated even though they give approximate results. 

In this report two solution procedures are used where both are special cases of the 
Newmark method. The Newmark method is a direct integration solution method 
where the equations of motion are integrated using a numerical step-by-step 
procedure. By the term “direct” it is meant that no transformation of the equations into 
a different form is carried out before the numerical integration. 

For a large structure where it is hard to find a solution that holds for the entire region 
the region is divided into smaller parts, so-called finite elements, for which the 
approximated solution is carried out over each element. Even though the searched 
variable is varying in a nonlinear manner over the entire region it may be a fair 
approximation to assume that the variable varies linearly over each element. 

The stability of the Newmark method depends on the parameters α and δ, see 
Section 5.1. The so called central difference method is, according to Bathe (1996), a 
special case of Newmark. with α=0 and δ=0.5. The central difference method is a 
conditionally stable method meaning that the time step increment ∆t must be smaller 
than a critical value of the time increment, ∆tcr, in order to generate a stable solution. 
If the time step increment is larger than ∆tcr the solution is unstable. 

The differential equation of motion for a damped body subjected to an external 
dynamic load is the most general form of the equation of motion. For single degree of 
freedom systems the equation of motion is shown in Equation (4.31). In order to 
facilitate when using finite elements the differential equation can be written in matrix 
and vector form. 

PRUCUM =++ &&&  (5.1)

M , C  and R  are the notations for the matrices of mass, damping and internal force 
respectively. P  is the vector of externally applied loads and U , U&  and U&&  are the 
displacement, velocity and acceleration vectors respectively. When analysing a mass-
spring system with only one degree of freedom only one element is used. In the 
following the displacement, velocity and acceleration vectors at time 0, denoted as 

U0 , U&0  and U&&0 , respectively, are assumed to be known. 
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5.1 The Newmark method 

In the Newmark method it is necessary to triangularize the stiffness matrix, see 
Bathe (1996). Only the case of linear elastic behaviour is discussed here, since other 
materials may give rather complex stiffness matrices to triangularize, however, the 
principle is the same. 

In the Newmark method the acceleration and displacement at time t+∆t are assumed 
to be: 

( )[ ] ttttttt ∆+−+= ∆+∆+ UUUU &&&&&& δδ1  (5.2)

( )[ ] 2
2
1 tt ttttttt ∆+−+∆+= ∆+∆+ UUUUU &&&&& αα  (5.3)

where α and δ are parameters that can be determined to obtain integration accuracy 
and stability. When setting α=0.25 and δ=0.5 in the Newmark method you get, 
according to Bathe (1996) the constant-average-acceleration method (or trapezoidal 
rule), illustrated in Figure 5.1. 

( )UU &&&& ttt ∆++2
1  U&&tt ∆+  

U&&t  

tt ∆+  t   

Figure 5.1 Newmark method with α =0.25 and δ =0.5. 

In case of linear elastic material the internal force at time t+∆t can be written as: 

UKR tttt ∆+∆+ =  (5.4)

where K  is the stiffness matrix. 

By using Equation (5.4) the equation of motion in Equation (5.1) can be expressed as: 

PKUUCUM =++ &&&  (5.5)

The equation of motion at time t+∆t is: 

PUKUCUM tttttttt ∆+∆+∆+∆+ =++ &&&  (5.6)

By rearranging the terms in Equation (5.3) the acceleration at time t+∆t can be 
expressed as: 

( ) UUUUUU &&&&&&& tttttttt

tt
+−

∆
−−

∆
= ∆+∆+

ααα 2
111

2  (5.7)
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By substituting Equation (5.7) into Equation (5.2) the expression for the velocity at 
time t+∆t are found. The relations for the acceleration and velocity at time t+∆t are 
used in the equation of motion (see Equation (5.6)) in order to solve for the 
displacement at time t+∆t. The complete algorithm for the Newmark method, 
according to Bathe (1996) is given in Table 5.1 below. 

Table 5.1 Algorithm for Newmark method when having linear elastic behaviour, 
according to Bathe (1996). 

A. Initial calculations: 

a. Form stiffness matrix K , mass matrix M  and damping matrix C . 

b. Initialize U0 , U&0  and U&&0 . 

c. Select time step t∆  and parameters α  and δ  to calculate integration 
constants: 

50.0≥δ   2)5.0(25.0 δα +≥  

20
1

t
a

∆
=

α
 

t
a

∆
=

α
δ

1  
t

a
∆

=
α

1
2  1

2
1

3 −=
α

a  

14 −=
α
δa  






 −∆= 2

25 α
δta  ( )δ−∆= 16 ta  ta ∆= δ7  

d. Form effective stiffness matrix K̂ . 

CMKK 10
ˆ aa ++=  

B. For each time step: 

a. Calculate effective loads at time tt ∆+ . 

( ) ( )UUUCUUUMPP &&&&&& tttttttttt aaaaaa 541320
ˆ ++++++= ∆+∆+  

b. Solve for displacements at time tt ∆+ . 

PUK ˆˆ tttt ∆+∆+ =  

c. Calculate accelerations and velocities at time tt ∆+ . 

( ) UUUUU &&&&& ttttttt aaa 320 −−−= ∆+∆+  

UUUU &&&&&& tttttt aa ∆+∆+ ++= 76  
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5.2 The central difference method 

When α=0 and δ=0.5 are chosen the central difference method is obtained, according 
to Bathe (1996). In the central difference method it is assumed that the acceleration 
for time t can be written as: 

( )UUUU tttttt

t
∆+∆− +−

∆
= 21

2
&&  (5.8)

The velocity expression is written as: 

( )UUU ttttt

t
∆+∆− +−

∆
=

2
1&  (5.9)

The displacement at time t+∆t is obtained by considering the equation of motion see 
Equation (5.1) at time t, i.e.: 

PRUCUM tttt =++ &&&  (5.10)

Since the equations are set up in a known state it is an explicit method.  

By using Equations (5.8) and (5.9) Equation (5.10) can be written as: 

UCMUMRPUCM ttttttt

ttttt
∆−∆+ 








∆
−

∆
−

∆
+−=








∆
+

∆ 2
112

2
11

222  (5.11)

The displacement at time t+∆t can now be solved but the solving algorithm is slightly 
different for different material responses. 

In the very beginning of the calculations U0 , U&0  and U&&0  are initialized but also the 
value of Ut∆−0  is required in order to calculate Ut∆+0  (see Equation(5.11)). The 
displacement at time 0-∆t can be expresses by means of displacement, velocity and 
acceleration at time 0. For sufficiently small t∆  the change of displacement during 
the time ∆t is: 

UUUU &&& 0
2

000

2
ttt ∆+⋅∆−=∆−  (5.12)

In order to use less storage space and less processing time the consistent mass matrix 
can be reduced to one with a more manageable size and structure. The preferable 
structure is a diagonal matrix as shown in Equation (5.13), called a lumped (or 
effective) mass matrix. 



















=

nM

M
M

.00
....
0.0
0.0

2

1

M  (5.13)
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Different methods can be used to transform the consistent mass matrix and obtain a 
diagonal matrix, one of them is HRZ lumping. However this is not discussed here but 
further information can be found in KTH (2006). 

 

5.2.1 Linear elastic material 

A material response curve linear elastic material can be seen in Figure 5.2. 

 

Figure 5.2 Material response curve for linear elastic material. 

In case of linear elastic material the internal force at time t can be written as: 

UKR tt =  (5.14)

where K  is the stiffness matrix see also Section 3.1.1. 

Substituting Equation (5.14) into Equation (5.11) gives: 

UCMUMKPUCM tttttt

ttttt
∆−∆+ 








∆
−

∆
−








∆
−−=








∆
+

∆ 2
112

2
11

222  (5.15)

Equation (5.15) can be written as: 

PUM ˆˆ ttt =∆+  (5.16)

Where 

CMM
tt ∆

+
∆

=
2
11ˆ

2  (5.17)

and 

UCMUMKPP ttttt

ttt
∆−








∆
−

∆
−








∆
−−=

2
112ˆ

22  (5.18)

The displacement at time t+∆t is calculated by use of Equation (5.16) as: 

PMU ˆˆ 1 ttt −∆+ =  (5.19)

u  

mR  
R  

maxu
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The time increment ∆t must be smaller than a critical value of the time increment, ∆tcr, 
which can be calculated from the mass and stiffness properties of the complete 
element assemblage. For linear problems, this critical time step ∆tcr is: 

max

2
ω

=∆ crt  (5.20)

where ωmax is the maximum eigenfrequency, bounded by the maximum frequency of 
the individual finite elements. 

Since M̂  does not varies in time, for linear elastic material (see Equation (5.17)), it is 
calculated only in the initial stage of the analysis together with the stiffness matrix K , 
mass matrix M  and damping matrix C  (if not neglected). The values of the 
displacement, velocity and acceleration at time 0, noted U0 , U&0  and U&&0  
respectively, are also initialized in the initial stage and after selecting time step size 
the displacement at time -∆t are calculated by means of Equation (5.12). Since P̂  
varies in time it has to be calculated for each time step in the analysis and for each 
time the displacement is calculated by means of Equation (5.19).  

The complete algorithm, according to Bathe (1996), for the central difference method 
when having a linear elastic material is given in Table 5.2. 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 

 

36 

Table 5.2 Algorithm for central difference method when having linear elastic 
behaviour according to Bathe (1996). 

A. Initial calculations: 

a. Form stiffness matrix K , mass matrix M  and damping matrix C . 

b. Initialize U0 , U&0  and U&&0 . 

c. Select time step t∆  ( crtt ∆≤∆ ). 

d. Calculate UUUU &&& 0
2

00

2
ttt ∆+∆−=∆−  

e. Form effective mass matrix M̂ . 

CMM
tt ∆

+
∆

=
2
11ˆ

2  

B. For each time step: 

a. Calculate effective loads at time t . 

UCMUMKPP ttttt

ttt
∆−








∆
−

∆
−








∆
−−=

2
112ˆ

22  

b. Solve for displacements at time tt ∆+ . 

PUM ˆˆ ttt =∆+  

c. If required evaluate accelerations and velocities at time t . 

( )UUUU tttttt

t
∆+∆− +−

∆
= 21

2
&&  

( )UUU ttttt

t
∆+∆− +−

∆
=

2
1&  
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5.2.2 Ideal plastic material 

A material response curve for ideal plastic material can be seen in Figure 5.3. 

 

Figure 5.3 Material response curve for ideal plastic material. 

The internal force R equals to the maximum value Rm if the external load is higher 
than the maximum value of the internal force or if the displacement is larger than 
zero. If the external load is lower than the maximum value of the internal force and 
there are no displacements the internal force will be equal to the external load. (See 
also Section 3.1.2). 

PR

RR
tt

m
t

=

=  
0also ifwhen

0orwhen

=<

≠≥

URP

URP
t

m
t

t
m

t

 (5.21)

where mR  is the maximum value of the internal force and Pt  is the external load 
matrix at time t. 

The equation of motion in Equation (5.1) at time t  is then: 

0UCUM

PRUCUM

=+

=++
&&&

&&&

tt

t
m

tt

 
0also ifwhen

0orwhen

=<

≠≥

URP

URP
t

m
t

t
m

t

 (5.22)

Equation (5.11) can in case of ideal plastic material written as: 

UCMUMRPUCM ttttttt

ttttt
∆−∆+ 








∆
−

∆
−

∆
+−=








∆
+

∆ 2
112

2
11

222  (5.23)

Equation (5.23) can be written as: 

PUM ˆˆ ttt =∆+  (5.24)

where 

CMM
tt ∆

+
∆

=
2
11ˆ

2  (5.25)

and 

u  

R  
mR  
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UCMUMRPP tttttt

ttt
∆−








∆
−

∆
−

∆
+−=

2
112ˆ

22  (5.26)

The displacement at time t+∆t is calculated by use of Equation (5.24). 

PMU ˆˆ 1 ttt −∆+ =  (5.27)

In Equations (5.26) it is seen that as long as the external load is lower than the 
maximum value of the internal force and the displacement and acceleration for time t 
and t-∆t respectively is zero there will be no motion since P̂t  becomes zero giving 
that Utt ∆+ , calculated as in Equation (5.27), becomes zero. 

Since M̂  does not varies in time for ideal plastic material, see Equation (5.25), it is 
calculated only in the initial stage of the analysis together with the stiffness matrix K , 
mass matrix M  and damping matrix C  (if not neglected). The values of the 
displacement, velocity and acceleration at time t=0, denoted U0 , U&0  and U&&0  
respectively, are also initialized in the initial stage and after selecting time step size 
the displacement at time -∆t are calculated by means of Equation (5.27). Since R  
depends on the size of the load and the displacement it must be calculated for each 
time step, see Equation (5.21). Also P̂  varies in time and has to be calculated for each 
time step in the analysis, see Equation (5.26) and the displacement at time t+∆t is 
calculated by means of Equation (5.27). 

The complete algorithm for the central difference method when having an ideal 
plastic material is given in Table 5.3. 
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Table 5.3 Algorithm for central difference method when having ideal plastic 
behaviour. 

A. Initial calculations: 

a. Form mass matrix M  and damping matrix C . 

b. Initialize U0 , U&0  and U&&0 . 

c. Select time step t∆  ( crtt ∆≤∆ ). 

d. Calculate UUUU &&& 0
2

00

2
ttt ∆+∆−=∆−  

e. Form effective mass matrix M̂ . 

CMM
tt ∆

+
∆

=
2
11ˆ

2  

B. For each time step: 

a. Determine the matrix of internal force for time t . 

PR

RR
tt

m
t

=

=  
0also ifwhen

0orwhen

=<

≠≥

URP

URP
t

m
t

t
m

t

 

b. Calculate effective loads at time t . 

UCMUMRPP tttttt

ttt
∆−








∆
−

∆
−

∆
+−=

2
112ˆ

22  

c. Solve for displacements at time tt ∆+ . 

PUM ˆˆ ttt =∆+  

d. If required evaluate accelerations and velocities at time t . 

( )UUUU tttttt

t
∆+∆− +−

∆
= 21

2
&&  

( )UUU ttttt

t
∆+∆− +−

∆
=

2
1&  
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6 Transformation from deformable body to SDOF 
system 

In order to simplify analyses of deformable bodies, which have an infinite number of 
degrees of freedom, the system can be discretized to a system with a finite number of 
elements and the degrees of freedom belonging to them. Beams and plates have, in 
practice, a limited possibility to move. This makes it possible to transform the 
structures to single degree of freedom systems here denoted as SDOF systems, see 
Figure 6.1. This simplification introduces errors into the analyses. For example the 
user assumes a shape of deflection valid for the SDOF system, in this report the shape 
of deformation corresponding to the first eigenmode is assumed, while the shape of 
deformation for beams are influenced by higher modes, see Section 4.2.3. 

yCIELM σ,,,,,  

),( txq  

eR  eC  
 

eM  

)(tPe  
  

Figure 6.1 Transformation from deformable body to SDOF system. 

The properties of the deformable body will be transformed to the SDOF system by 
assigning equivalent quantities for the mass, the internal force and the load applied to 
a system point. The SDOF system is assumed to have the same function describing 
the deflection in the system point. Since, in most cases, the maximum displacement is 
to be calculated the location of the system point in the deformable body is chosen to 
coincide with the point that achieves the larges displacement but it can be an arbitrary 
point along the beam. One condition, for the transformation of the properties to be 
possible, is that a uniform change of the deformation is assumed. That is if the 
displacement in one point of the beam increases the displacements in all the other 
points will increase proportional to this as illustrated in Figure 6.2. Another way to 
express this is to say that the principle shape of deformation is assumed to be the 
same, and hence be known at all times. 
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Figure 6.2 Shape of deformation at time 1t  and 2t . 

The transformation of the properties for the real structure to the equivalent properties 
for the SDOF system is made by use of transformation factors. The equivalent 
quantities and the transformation factors are derived from the condition that the 
energy exerted by the equivalent SDOF system must be equal to the energy exerted by 
the beam, when exposed to a certain load. Hence, the transformation factors will 
depend on the applied load and the deflection shape of the beam. 

 

6.1 Differential equation for SDOF system 

The differential equation for the SDOF system in Figure 6.1 is: 

)(tPRuCuM eesese =++ &&&  (6.1)

where Me is the equivalent mass, Re is the equivalent internal force and Pe(t) is the 
equivalent load applied which is varying with time. The damping, Ce, of the system is 
here chosen to be neglected since it has little influence on the value of the maximum 
displacement which is of interest. Neglecting the influences of damping also involves 
calculations that are easier to handle and gives results on the safe side because the 
capacity of the system is underestimated. When neglecting the damping the 
differential equation for the SDOF system in Equation (6.1) can be rewritten as: 

)(tPRuM eese =+&&  (6.2)

The equivalent quantities for the mass, the internal force and the load can be 
expressed by means of transformation factors. 

)(tPRuM PKsM κκκ =+&&  (6.3)

Equation (6.2) and (6.3) gives the definition of the transformation factors. 

Shape of 
deformation at 
time 2tt =  

Shape of 
deformation at 
time 1tt =  

),( 1txu
),(),( 12 txutxu ⋅=α

),()1(),(),( 112 txutxutxu −=− α

System point

x  
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M
M e

M =κ  (6.4)

R
Re

K =κ  (6.5)

)(
)(

tP
tPe

P =κ  (6.6)

In order to simplify the expression of the differential equation further two new 
transformation factors are defined.  

P

M
MP κ

κκ =  (6.7)

P

K
KP κ

κκ =  (6.8)

By use of Equations (6.3), (6.7) and (6.8) the differential equation for the SDOF 
system can be expressed as: 

)(tPRuM KPsMP =+κκ &&  (6.9)

 

6.2 Transformation factors for beams 

6.2.1 Transformation factor for the mass 

The transformation factor for the mass can be derived from the condition that the 
equivalent mass Me, following the oscillation of the system point us, shall generate the 
same amount of kinetic energy as the real system. 

The kinetic energy generated by the equivalent mass in the SDOF system is: 

2

2
seSDOF

k
vM

W =  (6.10)

where 
t

u
v s

s ∆
∆

= is the velocity of the system point in vertical direction. 

The kinetic energy for the beam is: 

∫
=

=

=
Lx

x

beam
k AdxvW

0

2

2
ρ  (6.11)
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where x  coordinate with origin in one end of the beam [m] 

 A  cross-section area [m2] 

 ρ  density [kg/m3] 

 
t
uxvv

∆
∆== )(  velocity of arbitrary point in vertical direction [m/s] 

Due to the statement above Equation (6.10) shall be equal to Equation (6.11), i.e.: 

∫∫
=

=

=

=

=⇔=
Lx

x s
e

Lx

x

se Adx
v
vMAdxvvM

0
2

2

0

22

22
ρρ  (6.12)

The change of the displacement in an arbitrary point in the beam can be expressed as: 

),()1(),(),(),(),( 11112 txutxutxutxutxuu −=−=−=∆ αα  (6.13)

where u(x,t1) is the displacement at time t=t1 at the distance x from one end of the 
beam and u(x,t2) is the displacement at the same position in the longitudinal direction 
of the beam at time t=t2. Due to the constant shape of the beam deflection u(x,t2) can 
be said to be a factor α times larger than u(x,t1), see Figure 6.2. 

This is also valid for the system point where the change of deformation when time 
goes from t1 to t2 thus can be expressed as, see Figure 6.2: 

)()1()()()()( 11112 tututututuu ssssss −=−=−=∆ αα  (6.14)

Since the assumption of uniform deformation is valid for all times, t, Equations (6.13) 
and (6.14) can be written in a more general form: 

),()1( txuu −=∆ α  (6.15)

)()1( tuu ss −=∆ α  (6.16)

The velocity of an arbitrary point in vertical direction and the velocity of the system 
point in the same direction can be expressed as v=∆u/∆t and vs=∆us/∆t  respectively. 
Using these expressions together with Equation (6.15) and (6.16), Equation (6.12) can 
be written as: 

( )
( )

Adx
tu
txuAdx

tu
txuM

Lx

x s

Lx

x s
e ρρ

α
α

∫∫
=

=

=

=

=
−
−=

0
2

2

0
2

2

)(
),(

)()1(
),()1(  (6.17)

If the definition of the transformation factor κM (see Equation (6.4)) is used and the 
beam is assumed to have a uniformly distributed mass the expression for the 
transformation factor for the mass can be written as: 
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dx
tu
txu

L
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
=








=

0

2

0

2

)(
),(1

)(
),(1 ρκ  (6.18)

i.e. the transformation factor for the mass is depending on the assumed shape of the 
deformation. 

 

6.2.2 Transformation factor for the load 

The transformation factor for the load can be derived from the condition that the 
equivalent load, following the oscillation of the system point, shall generate the same 
amount of work as the total real load does in the real MDOF system. 

The work generated by the equivalent load in the SDOF system during a time 
increment ∆t is: 

)()(e tutP s
SDOF =Π  (6.19)

The corresponding work for the beam is: 

∫
=

=

=Π
Lx

x

beam dxtxutxq
0

),(),(  (6.20)

where x  coordinate with origin at one end of the beam [m] 

 )(),(
0

tPdxtxq
Lx

x

=∫
=

=

 total load on the beam [N] 

Due to the statement above Equation (6.19) shall be equal to Equation (6.20) 
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The transformation factor for the load, see Equation (6.6), can now be written as: 

∫

∫
=

=

=

== Lx

x
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x s
P

dxtxq

dxtxq
tu
txu

0

0
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),(
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κ  (6.22)

Also the transformation factor for the external load is depending on the assumed 
shape of deformation. It is further depending on the shape of the load. 
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6.2.3 Transformation factor for internal force 

The transformation factor for the internal force, following the oscillation of the system 
point, can be derived from the condition that the equivalent internal force shall 
perform a work that is equivalent to the work of deformation for the beam. 

The internal force and the work it performs are depending on the behaviour of the 
material. For the SDOF system this is shown in Figure 6.3, where the shaded areas 
represent the total internal work for each material. Rme is the maximum value of the 
equivalent internal force. In case of linear elastic material the maximum internal force 
is corresponding to Rme=Ke·us,max. 

 

Figure 6.3 Internal work for SDOF system for a) Linear elastic material b) ideal 
plastic material c) trilinear material. 

The internal force for the SDOF system can be expressed for the three different types 
of spring relations shown in Figure 6.3. 

Linear elastic behaviour: 

see uKR =  (6.23)

where Ke is the stiffness of the linear spring in the SDOF system. 

Ideal plastic behaviour: 

( ) 0for ≠= tuRR mee  (6.24)

Because of the ideal plastic behaviour there will be no displacement until the load, 
Pe(t), has reached the value of the maximal internal force, Rme. 

Trilinear behaviour: 
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6.2.3.1 Linear elastic material 

Following Samuelsson and Wiberg (1999) the work of deformation for the beam 
made of linear elastic material can be derived by studying a lamella of length ∆x and 
the sectional forces, N , and deformations, ∆n , belonging to it, see Figure 6.4. 

N  N  

V

V  

M  
M  

x∆  

z

 

Figure 6.4 Segment, with length x∆ , of the beam. 

The constitutive relationship between the sectional forces N  and the deformations 
∆n  are: 
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where E  modulus of elasticity [Pa] 

 A  cross-section area [m2] 

 
)1(2 υ+

= EG  shear modulus [Pa] 

 υ  Poisson’s ratio [-] 

 β  constant, shape factor [-] 

 I  moment of inertia [m4] 

The meanings of the deformations ∆n, ∆t and ∆m are shown in Figure 6.5. 
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Figure 6.5 Deformation of beam lamella. 

The constant β can be derived from the statement that the work of deformation due to 
shear force shall be equal to the work of deformation due to shear stress. 

dzzbzz
GA
VVV

hz

z

)()()(
0

γτβγ ∫
=

=

==  (6.27)

where 
GA
Vβγ =  average value of shear angle [-] 

 τ  shear stress [Pa] 

 b  width of the cross-section [m] 

 h  height of the cross-section  [m] 

 
G
τγ =  shear angle [-] 

For a certain time in the loading the sectional forces will increase from N  to NN d+  
and the deformations will increase from n∆  to ∆n∆n d+ . The change of the work of 
deformation is defined as the change of the work during the change of deformation 
∆nd . 

mMdtVdnNdd s
i ∆+∆+∆=Π  (6.28)

where index s and i stands for segment and internal respectively. 

When using Hooke’s law Equation (6.28) can be rewritten 
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x
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x
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∆
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∆
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∆
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β
 (6.29)

In order to get the total work of deformation of the segment, Equation (6.29) will be 
integrated over the deformation∆n . 

m∆n∆  

t∆
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Once again using Hooke’s law and integrating the work of deformation for the 
segment over the length, L, of the beam will give the total work of deformation for the 
beam. 
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If the influences from the normal- and shear forces are neglected the total work of 
deformation for the beam can be written as: 

∫
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Equilibrium position 

Position when the force in the spring is 
eR  larger than in equilibrium position 

ξ  
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a) 

b) 

 

Figure 6.6 Mass in a) equilibrium position and b) moved ξ from equilibrium 
position. 

Study the undamped SDOF system in Figure 6.6. The displacement ξ causes an 
internal work for the SDOF system which by use of Equation (6.23) can be written as: 
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As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to 
the total work of deformation of the beam, meaning that Equation (6.32) shall be 
equal to Equation (6.33). 
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The stiffness K of the beam is depending on the shape of the load and is determined 
by: 

s
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),(  (6.35)

The definition of stiffness K of the beam according to Equation (6.35) together with 
Equation (6.34) gives the final expression of the transformation factor for the internal 
force when having a linear elastic material. 
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For high beams it might be necessary to include the influences from the shear forces 
to get adequate results, see Section 6.2.4 for further discussion. 

 

6.2.3.2 Ideal plastic material 

As when deriving the work of deformation for the beam made of linear elastic 
material a lamella of the ideal plastic beam with length ∆x is studied. For ideal plastic 
material the influence of the normal- and the shear force is neglected in the following 
derivation of the transformation factor. For high beams the influence of shear will 
cause the transformation factor to change noticeable. 

Consider a situation when the moment, M, will increase to M+dM and the 
deformation of the segment, ∆m will increase to ∆m+d∆m. The increase of the work 
of deformation is defined as the work achieved during the deformation d∆m.  

mMdd s
i ∆=Π  (6.37)

where the moment M is constant within the segment. 

In order to obtain the total work of deformation for the segment Equation (6.37) will 
be integrated over the deformation ∆m. 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 

 

50 

mMmdMmMd
mm

s
i ∆=∆=∆=Π ∫∫

∆∆

00

 (6.38)

Integration of the work of deformation for the segment over the length, L, of the beam 
will give the total work of deformation for the beam. 
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The internal work for the SDOF system, when the spring has ideal plastic behaviour, 
can be derived in the same way as for linear elastic behaviour (see Section 6.2.3.1). 
For an ideal plastic material the internal force is constantly equal to Rme if the 
displacement ξ exists (see Equation (6.24)). 
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As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to 
the total work of deformation of the beam, that is Equation (6.39) shall be equal to 
Equation (6.40).  
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This gives the final expression of the transformation factor for the internal force when 
having an ideal plastic material. 
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The maximum value of the internal force is equal to the external load (since the 
external load shall generate the same work of deformation as the internal resisting 
force). 
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If Equation (6.43) is inserted in Equation (6.42) the transformation factor for the 
internal resisting force in case of ideal plastic behaviour is expressed as: 
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6.2.3.3 Trilinear response material 

The trilinear response curve in Figure 6.3.c can represent the response of a reinforced 
concrete beam subjected to pure bending, see Chapter 12 for the application on 
concrete material. 

The derivation of the transformation factor for internal force and trilinear material is 
rather complex. Due to the difficulties to derive the expression of the transformation 
factor for a multilinear material it is here assumed to be convenient to use the 
transformation factor for linear elastic material in the analyses of trilinear material. 
The choice of transformation factor for the internal force for trilinear material is 
further discussed in Chapter 8. 

 

6.2.4 Tabled transformation factors for beams 

The values of the transformation factors for mass, load and internal force for the 
beams shown in Figure 6.7 are calculated in Appendix A to B and are shown in Table 
6.1. The system point is placed in the middle of the beam for all cases except of 
cantilever beams, when it is placed in the free end of the beam. When having linear 
elastic material the natural shape of deformation, meaning the shape of deformation 
according to theory of elasticity for a beam subjected to a static load, is assumed. In 
case of ideal plastic material the mechanisms according to theory of plastic hinges is 
assumed (see examples in Appendix B).  

L  L

L L

Case (1.1) Case (1.2) 

Case (2.2) Case (2.1) 

L L

Case (3.2) Case (3.1) 
 

Figure 6.7 The six different cases. 
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Table 6.1 Transformation factors for beams shown in Figure 6.7 

 Material Pκ  Mκ  Kκ  MPκ  KPκ  

Elastic 1.0 0.486 1.0 0.486 1.0 
Case (1.1) 

Plastic 1.0 1/3 1.0 1/3 1.0 

Elastic 0.640 0.504 0.640 0.787 1.0 
Case (1.2) 

Plastic 0.5 1/3 0.5 2/3 1.0 

Elastic 1.0 0.371 1.0 0.371 1.0 
Case (2.1) 

Plastic 1.0 1/3 1.0 1/3 1.0 

Elastic 0.533 0.406 0.533 0.762 1.0 
Case (2.2) 

Plastic 0.5 1/3 0.5 2/3 1.0 

Elastic 1.0 0.236 1.0 0.236 1.0 
Case (3.1) 

Plastic 1.0 1/3 1.0 1/3 1.0 

Elastic 0.400 0.257 0.400 0.642 1.0 
Case (3.2) 

Plastic 0.5 1/3 0.5 2/3 1.0 

 

Granström (1958) and Balasz (1997) have used a different expression for the 
transformation factor for the internal force, the relation with the transformation factor 
used here are shown in Appendix C. 

When taking the influences from shear into account the transformation factor depends 
also on the shear modulus and consequently the Poisson's ratio ν. In case of a fixed 
concrete beam (ν≈0.15) with linear elastic material, subjected to a uniformly 
distributed load and the length of the beam is ten times the height (L=10h) the 
contribution from the shear to the transformation factor for internal force is 0.01 
according to Wendt (2006). In Table 6.1 it is seen that in this case, when the influence 
of shear is not taken to account, the transformation factor for the internal force is 
0.533. The transformation factor for the internal force is thus 0.533+0.01=0.543 when 
influences from shear are included. When the length of the beam is five times the 
height (L=5h) the contribution from the shear to the transformation factor for internal 
force is 0.06 according to Wendt (2006) and the value of the transformation factor for 
internal force is 0.533+0.06=0.593 when influences of shear are taken into account. 
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7 Comparison of SDOF and FE analyses for beams 
In order to verify the results of the analysis where the beam is represented by an 
SDOF system, a comparison to the results in a finite element analysis (FE analysis) is 
made. The FE analysis is here assumed to give results accurate enough to be equal to 
the real behaviour of the beam. 

Due to limitations in the SDOF analysis the influences of higher order modes are not 
taken into account while it is in the FE analysis. When analysing a beam with trilinear 
material response a difference between the SDOF and FE results is expected since the 
transformation factors for linear elastic material is used in this case as discussed in 
Section 4.2.3. 

 

7.1 Typical examples 

Comparisons are made for four different cases; simply supported beam subjected to 
concentrated and uniformly distributed load respectively, and beam with fixed ends 
subjected to concentrated and uniformly distributed load respectively. The different 
cases are shown in Figure 7.1. 

Each case will be analysed for linear elastic (1 analysis), ideal plastic (1 analysis) and 
trilinear material (3 analyses) as described in Chapter 6. Further each case with each 
material model will be analysed as a SDOF system as well as a MDOF system. This 
summons up in 402)311(4 =⋅++⋅  analyses. The MDOF system is analysed by use 
of the commercial code ADINA (2004). 

 

m5.2=L  m5.2=L  

m5.2=L  m5.2=L  

Case (1.1) Case (1.2) 

Case (2.2) Case (2.1) 

 

Figure 7.1 The four different cases. 

The choice of material properties and geometry of the beam is based on the 
requirements in the Swedish shelter regulations, Räddningsverket (2003), also 
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discussed in Section 12.3. The geometry of the beam will be the same for all cases 
with a length of 2.5 meters and a cross-section as shown in Figure 7.2. 

b  

h  
m35.0

m0.1
=
=

h
b

 

 

Figure 7.2 The cross-section of the beams used in the typical examples. 

It is necessary to use material properties and loads that agree in both FE and SDOF 
analyses in order to facilitate the comparison of the results from the different analyses. 

The load applied is triangular in time, as shown in Figure 7.3. Where the total time for 
the load is 1.0 ms and the maximum value of the load ( 1P ), also called the peak value 
of the load, is chosen to occur when 10% of the total time for the load has elapsed. In 
reality the peak load occurs at time 0.0 ms but since this can cause numerical 
problems the approximation described above is used. 

 

0.1  1 time [ms] 

load [kN] 

1P  
 
 
 

 

Figure 7.3 Time function of the load. 

The peak value of the load differs in the analyses. When having a trilinear material 
three different analyses are made for each typical example. One for a load small 
enough to stay in the elastic range, one for a load large enough to leave the elastic 
range but still small enough not to reach the plastic range and one with a load large 
enough to reach the plastic range, see Figure 7.4. 
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 R 

uElastoplastic range Plastic range Elastic range 

 

Figure 7.4 The different ranges for a trilinear material. 

In case of trilinear material the maximum load value when elastic behaviour is wanted 
is chose to be P1=0.8Pcr, when elastoplastic behaviour is wanted P1=0.8(Rm-Pcr) and 
for plastic behaviour P1=2Rm. Table 7.1 shows the values of the peak load for the 
different analyses. In case of uniformly distributed load the peak value of the load is 
q1=P1/L. 

Table 7.1 Peak values for the loads applied to the beams. 

Case (1.1) Case(1.2) Case (2.1) Case (2.2) 

Material Peak load, 
1P  [kN] 

Peak load, 
1P  [kN] 

Peak load, 
1P  [kN] 

Peak load, 
1P  [kN] 

Linear elastic 132 268 120 184 

Ideal plastic 4810 9640 4220 8560 

Elastic range 132 268 120 184 

Elastoplastic 
range 

1954 3920 1715 3467 Trilinear 

Plastic range 4810 9640 4220 8560 

 

In the SDOF analyses the total time for the analysis is set to 30 ms and 10000 time 
steps are used which gives a constant time increment, ∆t, equal to 0.003 ms. This time 
step is also used in case of elastic material in the FE analyses. In case of ideal plastic 
and trilinear material  the time step is decreased since otherwise convergence 
problems will occur in ADINA (2004), see Section 7.1.2. In these analyses a time step 
increment of 0.0015 ms are used. The time increment of 0.003 ms in the SDOF 
analyses for ideal plastic and trilinear material remains. 
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When analysing a beam as a SDOF system with trilinear behaviour (for example a 
reinforced concrete beam) the material properties are often given as the relation 
between load and displacement while in the FE analyses the stress-stain relation is 
required. How to obtain an approximate stress-strain relation from the load-
displacement curve for the beams in the typical examples are shown in Appendix D. 
The corresponding notations when using a stress-strain relation and a load-
displacement relation are shown in Figure 7.5. 

u

P  

K ′  

plu  cru  

plP  

crP  

K  

ε  

σ

E′

plε  crε  

plσ  

crσ  

E

 

Figure 7.5 Notations for material properties for load-displacement relation and 
stress-strain relation respectively. 

It shall be observed that the modelled beams in ADINA (2004) will not vibrate as a 
reinforced concrete beam since plastic deformations occur also in the elastoplastic 
range while a reinforced concrete beam have elastic behaviour in both elastic and 
elastoplastic range, see Section 3.1.3. The solution of the SDOF analyses are here 
forced to have the same behaviour meaning that plastic deformations will occur as fast 
as the elastoplastic range is entered. However, this will not influence the value of the 
maximum deflection and are therefore application able on analyses of reinforced 
concrete beams as long as the maximum value of the displacement is to be found. 

 

7.1.1 SDOF analysis 

Analyses of the SDOF system are made in OCTAVE using MATLAB programming 
language, developed for this project that computes the displacement for each time step 
for the three different types of material responses. The computations are made by 
using the explicit central differential method, see Section 5.2. The material data 
needed to perform the calculations for the different materials are calculated in 
Appendix D and shown in Table 7.2 where the meaning of the notations can be seen 
in Figure 7.5. 
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Table 7.2 Material properties for SDOF analysis. 

Material crP  [kN] plP  [kN] KK ′  plσ  [MPa] E  [GPa]

Linear elastic - - - - 38.6 

Ideal plastic - - - 4.45 - 

Case (1.1) 53.8 218.2 

Case (1.2) 107.7 436.4 

Case (2.1) 107.7 436.4 
Trilinear 

Case (2.2) 161.5 872.9 

0.0774 - 38.6 

 

7.1.2 FE model 

The program used for the FE analyses is the commercial code ADINA (2004) where 
the solution method is Newmark with δ=0.5 and α=0.25. This method is also called 
the trapezoid method or constant-average-acceleration method, see Section 5.1. 

Different FE models are used for the different material responses. Due to limitations 
in the ADINA (2004) program the elements used to model the beam will not be the 
same for all cases. In the cases of elastic and ideal plastic material the beam is 
modelled with 2-node beam elements as shown in Figure 7.6. When having elastic 
material the beam is divided into twenty equally sized elements (see Appendix E). 

 

Figure 7.6 Beam element with constant, rectangular cross-section. 

In case of an ideal plastic material the beam is divided into parts modelled with ideal 
plastic material and parts with linear elastic material in order to imitate the assumed 
mechanisms. The elements with ideal plastic material are located where the assumed 
plastic hinges are located, see Figure 3.13. The linear elastic part of the beam is 
divided into 48 elements and the total number of ideal plastic elements differs due to 
the different numbers of plastic hinges for different beams. In case of simply 
supported beams the total length of the part modelled with linear elastic material is 
2.45 m and in case of a beam fixed in both ends the total length of the elastic part is 
2.4 m. For all beams the length of the ideal plastic elements are 2.5 cm. Constraints 
are used in the nodes belonging to the elastic part of the beam in order to have no 
curvature. The rotation of these nodes is constrained to be the same as in the node in 
between the element with plastic material in the middle, in case of simply supported 
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beam, and at the supports, in case of fixed beam, and the last elastic element. This is 
done in order to imitate the assumed mechanisms even more. The beams in the ideal 
plastic analyses are shown in Figure 7.7 and Figure 7.8. 

 

2 ideal plastic elements 
with length 2.5 cm each 

24 linear elastic elements 
Total length 1.225 m 

 

Figure 7.7 Modelled beam (simply supported) for ideal plastic material. 

 

1 ideal plastic 
element with 
length 2.5 cm 

1 ideal plastic 
element with 
length 2.5 cm 

2 ideal plastic 
elements with 
length 2.5 cm each 

24 linear elastic elements 
Total length 1.2 m 

 

Figure 7.8 Modelled beam (fixed in both ends) for ideal plastic material. 

When having a trilinear material (modelled with multilinear material) the beam cannot 
be modelled with beam elements in ADINA (2004). Instead 2-node isobeam elements 
are used. The beam is divided in three hundred parts in the longitudinal direction in 
case of uniformly distributed loads. In case of concentrated loads an odd number of 
elements will be used in order to avoid an unrealistic deformation in the midzone. 299 
elements are used in these cases (see Appendix E) and the middle element has 
trilinear material behaviour while the other elements will have a material response as 
shown in Figure 7.9, here called bilinear material behaviour, in order to avoid large 
plastic deformations here. The length of the midpoint element is 2.5 cm, see Figure 
7.10 and Figure 7.11. 
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Figure 7.9 Bilinear material behaviour used in all elements except the midpoint 
element in case of trilinear material and concentrated load. 

 

1 element with 
trilinear material 
and length 2.5 cm 

149 elements with total length 
of 1.2375 m and bilinear 
material

 

Figure 7.10 Modelled beam (simply supported) for trilinear material in case of 
concentrated load. 

 

1 element with 
trilinear material 
and length 2.5 cm 

149 linear elastic elements 
Total length 1.225 m 

 

Figure 7.11 Modelled beam (fixed in both ends) for trilinear material in case of 
concentrated load. 

The main difference between beam and isobeam elements is that beam elements have 
2 nodes while isobeam elements can have 2, 3 or 4 nodes where 3- and 4-node 
isobeam elements can be used to define curved beams (see Figure 7.12). Even though 
there are some calculation differences when using 2-noded isobeam elements instead 
of beam elements the results will be very similar. For further information see 
ADINA (2004). The material data used to perform the calculations for the different 
materials are shown in Table 7.3. 
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Figure 7.12 General 3-D isobeam elements. From ADINA (2004). 

Table 7.3 Material properties for FE analysis 

Material E  

[GPa] 

E ′   

[GPa] 

crσ  
[MPa] 

plσ  
[MPa] 

crε   
[‰] 

plε   
[‰] 

Linear elastic 38.6 - - - - - 

Ideal plastic 50001) - - 4.452) - - 

Trilinear 38.6 2.99 1.65 4.45 0.043 0.98 

1) In ADINA (2004) it is not possible to model an ideal plastic material but in order to imitate this 
behaviour a bilinear plastic material is used where the modulus of elasticity in the elastic part is 
chosen to be large enough to get accurate result. By testing it was found that a suitable value of 
the modulus of elasticity was 5000 GPa see Appendix E.  

2) The elements in the beam that are not connected to any assumed plastic hinge are modelled with 
linear elastic material in order to avoid yielding in these elements. 

 

7.2 Results 

7.2.1 Linear elastic material 

In the SDOF- and FE analyses with linear elastic material the input shown in Table 
7.2 and Table 7.3 were used. The displacement-time relations from SDOF and FE 
analyses for linear elastic material are compared in Figure 7.13. 

2-node isobeam 

3-node isobeam 

4-node isobeam 
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SDOF FEM 
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Figure 7.13 Displacement-time relations from analyses for linear elastic material. 

As predicted there are influences from higher modes in the results from the FE 
analyses. These are represented by a non smooth character of the curve. When 
comparing the FE results for the different cases it can be observed that the higher 
modes influence the beams subjected to a concentrated load more than they affect the 
results for a beam subjected to a uniformly distributed load.  

There is a good agreement between the curves representing the SDOF and FE 
solution. 

A phase shift between the results from the SDOF and FE analysis can be noticed in 
case of concentrated load. 

 

7.2.2 Ideal plastic material 

In the SDOF- and FE analyses with ideal plastic material the input shown in Table 7.2 
and Table 7.3 were used. The displacement-time relations from SDOF and FE 
analyses for ideal plastic material are shown in Figure 7.14. 
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Figure 7.14 Displacement-time relations from analyses for ideal plastic material. 

The values of the maximum displacement from the SDOF analysis are lower than the 
values from the FE analyses but the difference is rather small for all cases and the 
SDOF results are acceptable approximations of the FE results. The lower value can be 
may be explained by the fact that the same behaviour are not exactly the same in 
SDOF and FEM. 

 

7.2.3 Trilinear material 

The results from the analyses when having a trilinear material are presented in this 
section. Due to the change in behaviour for different loads three different values of 
loads are used for each case see Table 7.1. In the SDOF- and FE analyses with 
trilinear material the input shown in Table 7.2 and Table 7.3 are used.  

 

7.2.3.1 Elastic range 

For a load small enough all points in the beam will remain elastic meaning that the 
beam will vibrate about the position of the unloaded beam. Since the only differences 
between these analyses and the analyses for linear elastic material is that the beam is 
modelled with isobeam elements instead of beam elements and that more elements are 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 
63

used (300 or 299 instead of 20) the results will be identical or nearly identical in those 
cases see Section 7.2.1. The displacement-time relations from SDOF and FE analyses 
for trilinear material, elastic range, are shown in Figure 7.15. 
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Figure 7.15 Displacement-time relations from analyses for trilinear material,  
                        elastic range. 

The results are very similar to the results achieved in the analysis of linear elastic 
material, see Section 7.2.1, but one difference worth attention is that the phase shifts 
have increased for all cases. One difference between the two analyses that could be 
the reason for this difference is that for the trilinear material isobeam elements are 
used while beam elements are used for the linear elastic material. Also the element 
mesh differs in the two analyses. In case of linear elastic material 20 elements are 
used while 300 or 299 are used in case of trilinear material. With these exceptions the 
comments are the same as for the results achieved in the analyses of linear elastic 
material. 

 

7.2.3.2 Elastoplastic range 

For a load large enough to leave the linear elastic range but still small enough not to 
reach the plastic range there will be plastic deformations of the beam leading to 
oscillations about a value not identical to the unloaded position. The displacement-
time relations from SDOF and FE analyses for trilinear material, elastoplastic range, 
are shown in Figure 7.16. 
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Figure 7.16 Displacement-time relations from analyses for trilinear material,    
                        elastoplatic range. 

The SDOF analyses overestimate the maximum displacement of the system point for 
all cases. A reason for the differences in value of the maximum displacement, 
comparing the SDOF with the FE solution, is that the transformation factor for the 
linear elastic material is used through the whole analyses instead of using 
transformation factors especially derived for this kind of material, see Section 6.2.3.3. 
Another reason, probably the most important, is that the relation between the load and 
displacement is not exactly the same for the SDOF and FE analyses see Appendix D. 

In the FE analyses there is a difference between the maximum displacements in the 
first oscillation compared to the maximum displacements in the following oscillations. 
This loss in maximal displacement is not represented in the SDOF analysis where all 
the oscillations have the same maximal displacement. 

 

7.2.3.3 Plastic range 

For a load large enough to reach the plastic range there will be plastic deformations in 
the beam, causing the beam to oscillate around a value not identical to the unloaded 
position. The displacement-time relations from SDOF and FE analyses for trilinear 
material, plastic range, are shown in Figure 7.17. 
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Figure 7.17 Displacement-time relations from analyses for trilinear material,  
                        plastic range. 

As seen in Figure 7.17 the difference between the SDOF and FE analyses is rather 
large for beams subjected to concentrated loads. Even though the FE models of the 
beam in case (1.1) and (2.1) are made in order to avoid large and unrealistic midpoint 
displacements in the very beginning of the analyses the fast load application probably 
influences the FE results more than the SDOF results. In Figure 7.18 where the 
standardized deflection along the beam from the FE analysis in case (1.1) and (2.1) 
are shown together with the assumed shape of deformation in the SDOF analysis. The 
two shapes of deformation (meaning SDOF and FE) are not the same which partly 
explains the difference between results from the SDOF and FE analyses in case of 
concentrated loads. 
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Figure 7.18 Standardized displacement along the beam in a) case (1.1) and b) case 
(2.1) compared to the assumed shape of displacement in the SDOF 
analyses. 

The standardized shapes of deflection for case (1.2) and (2.2) are shown in 
Appendix F. 

In case of uniformly distributed loads the results agree more even though unrealistic 
deflections appear at the supports in case (2.2). This behaviour can be explained by 
the fact that the information is spread with delay inside the beam meaning that in the 
very beginning of the loading the zones at the supports reaches high stresses before 
the information has been transported to the rest of the beam (further discussed in 
Section 12.1). This phenomenon is not taken into account in the SDOF analyses. A 
more realistic value of the midpoint deformation can be estimated as shown below. 

The deformation along the beam in case (2.2) is shown in Figure 7.19 where an 
unrealistic deformation occurring at the supports can be seen. These appear in the 
very beginning of the analysis and affects values of the midpoint deflection. A more 
realistic value of the displacements at the supports from the FE analysis is shown in 
Figure 7.20. In Figure 7.21 the more realistic midpoint displacement is shown 
together with the SDOF result and the unrealistic FE result. 
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Figure 7.19 Displacement along the beam in case (2.2). 

a) b) 
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Figure 7.20 Estimated displacement for the beam in case (2.2) 
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Figure 7.21 More realistic displacement for the beam in case (2.2) compared to the 
SDOF result. 
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8 Comments to and discussion about Chapter 7 

8.1 Transformation factors for trilinear material 

In the analyses made in Chapter 7 the linear elastic transformation factors are used 
when analysing SDOF systems with trilinear material since the derivation of the 
transformation factor for internal force and trilinear material is rather complex. The 
choice of transformation factors in case of trilinear material is discussed here.  

Different approximations and simplifications can be used in order to facilitate 
dynamic analyses of trilinear materials. Two approximation methods, convenient to 
use in many cases according to Norris (1959), is discussed here. 

 

8.1.1 Sudden change of transformation factors 

Norris (1959) declares that, even though a sudden change of transformation factors is 
unrealistic when analysing an elastoplastic material, it is often assumed to be 
convenient to use this approximation for purposes of analysis. This means that it is 
assumed to be convenient to use the transformation factor for linear elastic material in 
the elastic range and the transformation factor for plastic case in the plastic range. 
When this statement is applied on trilinear material also the elastoplastic range has to 
be considered. 

In the elastoplastic range the transformation factor can be derived in the same way as 
in the case of linear elastic and ideal plastic material. However, this is not done here 
since the expression will depend on the value of the internal force where there is a 
drastic change of material behaviour. In order to avoid these complex expressions it is 
assumed to be suitable to use transformation factor for linear elastic materials in the 
elastic range, an average value of the elastic and plastic transformation factor in the 
elastoplastic range and transformation factor for ideal plastic materials in plastic 
range. 

2

plel
elpl κκκ +=  (8.1)

where κelpl, κel and κpl are the transformation factors in the elastoplastic, elastic and 
plastic range respectively. 

In case of trilinear material the differential equation in the different ranges is: 

In the elastic range 
eee PuKuM =+&&  (8.2) 

In the elastoplastic range 
ecrecree PuuKuKuM =−′++ )(&&  (8.3) 
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In the plastic range 
emee PRuM =+&&   (8.4) 

By use of transformation factors Equations (8.2) to (8.4) can be written as: 

In the elastic range 
PKuuM el

P
el
K

el
M κκκ =+&&  (8.5) 

In the elastoplastic range 
( ) PuuKKuuM elpl

Pcrcr
elpl
K

elpl
M κκκ =−′++ )(&&  (8.6) 

In the plastic range 
PRuM pl

Pm
pl
K

pl
M κκκ =+&&  (8.7) 

or 

In the elastic range 
PKuuM el

KP
el
MP =+κκ &&  (8.8) 

In the elastoplastic range 
( ) PuuKKuuM crcr

elpl
KP

elpl
MP =−′++ )(κκ &&  (8.9) 

In the plastic range 
PRuM m

pl
KP

pl
MP =+κκ &&  (8.10)

In case of a fixed beam subjected to a uniformly distributed load the transformation 
factors in Equations (8.8) and (8.10), shown in Table 6.1 ,are: 

0.1

762.0

=

=
el
KP

el
MP

κ
κ

 

0.1

3/2

=

=
pl
KP

pl
MP

κ
κ

 

(8.11)

and the transformation factors in the elastoplastic range, calculated by means of 
Equation (8.1) are: 

0.1

714.0
2

667.0762.0

=

=+=

elpl
KP

elpl
MP

κ

κ
 (8.12)

The transformation factor κKP equals 1.0 in all ranges why only the value of the 
equivalent mass will change. Since the value of κMP decreases when a new range is 
entered it can be compared with taking away or losing mass. This means that when 
using this method, where a sudden change of the transformation factors is allowed, the 
energy will be drastically decreased when a new range is entered. This is graphically 
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shown in Figure 8.1 where the energy of the SDOF system is studied when analysing 
the beam in Section 12.4. The total energy used by the SDOF system will be lower 
than the total energy applied to the system which is not realistic and will result in 
underestimated value of the final displacement. 
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Figure 8.1 Energy, applied and internal, for SDOF system analysed by use of 
different transformation factors in different ranges. 

This is easily seen by studying areas representing the total internal energy when the 
maximum displacement is reached, see Figure 8.2. When the maximum displacement 
is reached the total internal energy equals the maximum potential energy R·umax. Since 
the internal resisting force is equal in the two cases, if it is assumed that the ideal 
plastic range is reached, the maximum displacement in umax,2 case 2 must be larger 
than the maximum displacement umax,1 in case 1. 

 

Figure 8.2 Total internal energy in case 1, where energy is lost due to change of 
transformation factors, and case 2 where no energy is lost. 

In order to compensate the loss of mass, and hence energy, when entering a new range 
the value of the acceleration can be increased in this point. This is here only shown 

Total applied energy 

Energy loss 

Total internal 
energy 1max,uR ⋅  

Total internal 
energy 2max,uR ⋅  

Case 1 Case 2 
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when going from the elastic range to the elastoplastic range but the same method is 
used when going from the elastoplastic to the plastic range. 

Just before the elastoplastic range is entered the displacement is ucr
- and the 

differential equation is: 

PKuuM cr
el
KPcr

el
MP =+ −− κκ &&  (8.13)

The displacement when the elastoplastic range is entered is ucr and the differential 
equation is: 

PKuuM cr
elpl
KPcr

elpl
MP =+κκ &&  (8.14)

The transformation factor κKP is equal to 1.0 and in order to keep the energy constant 
in this specific point Equation (8.15) must be fulfilled. 

−= cr
el
MPcr

elpl
MP uMuM &&&& κκ  (8.15)

giving: 

−= crelpl
MP

el
MP

cr uu &&&&
κ
κ  (8.16)

However, this is not done in the analyses discussed in this report. Instead constant 
values of the transformation factors are used trough the analyses giving no energy 
loss. 

 

8.1.2 Constant transformation factors 

Norris (1959) also states that, since the difference between the transformation factors 
in case of linear elastic and ideal plastic material is not great it is often permissible to 
use an average value of the transformation factors throughout the elastoplastic 
dynamic analysis. 

This can be assumed to be valid also for trilinear material where the transformation 
factors thus are calculated as shown in Equation (8.1). However, it can be discussed if 
this is the best value to use in the analyses. The energy required to get motions of the 
system depends, among other quantities, on the mass. More energy is required to get 
motion of a heavy body than for a less heavy body. Since the equivalent mass 
becomes smaller when an average value of the transformation factors is used less 
energy will be consumed when starting the motion. This is here assumed to influence 
the results so much that it motivates to use the transformation factor for linear elastic 
material in the analyses. In the analyses made in Chapter 7 the applied transient load 
is active only in the elastic range which motivates the choice even more. 
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8.2 Discussion about FE models used in analyses 

In Chapter 7 the time-displacement curve calculated by use of the simplified method 
of transforming beams into SDOF systems is compared with results from finite 
element analyses. This is made in order to verify the SDOF method. Even though 
there is not full agreement between the results the SDOF method is assumed to be 
results that are accurate enough. In these FE analyses the beams are modelled so that 
yielding will only occur in the points where the plastic hinges are assumed to form. 
However, in the reality, the zones with yielding are larger than just a point why this 
way of modelling the beams can be questioned. 

If the simply supported beam subjected to a concentrated load, case(1.1), are modelled 
in the same way as in Section 7.1.2 but this time all elements have trilinear material 
behaviour the maximum midpoint displacement are almost twice the value achieved 
with the FE model used in the FE analyses in Chapter 7, see Figure 8.3. 
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Figure 8.3 Time-displacement relation for case(1.1) from FE analyses where two 
different types of FE models are and the time-displacement curve from 
SDOF analyses. 

The increased value of the maximum midpoint deflection can be explained by the fact 
that also elements around the midelement will reach the plastic range and will 
therefore achieve larger deformations. This is hence not a problem in case of linear 
elastic material or if the plastic range is not reached in case of trilinear material. The 
comparisons made in Chapter 7, when having plastic effects, can therefore be said to 
verify that the method of transforming deformable bodies into SDOF systems is rather 
well corresponding to the idealized reality rather than the “real” reality. This means 
that rather the assumptions made for plastic effects made in the SDOF analyses than 
the method it self shall be questioned.  

This effect does not appear in case of uniformly distributed loads even though the 
plastic range is reached. 
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9 Pressure and impulse load acting on SDOF system 
In this chapter the concepts of pressure and impulse load are shown and discussed. Let 
the loads act on a SDOF system, as shown in Figure 9.1, where damping is neglected. 
The SDOF system is assumed to be in equilibrium position (no movement) before the 
loading starts. 

u

P
M R

 

Figure 9.1 SDOF system with mass M , load P  and internal force R . 

In the case of pressure load the load will reach the maximum value instantaneously 
and keep this value for unlimited time. The impulse load increases and decreases 
instantaneously and the duration of time the load is applied is infinitely small. The 
small duration of the load time is compensated by a very high value of the load. 
Figure 9.2 illustrates the principals of the two extreme cases. 

)(tP

t  

cP

)(tP

t  

 

Figure 9.2 Characteristic pressure and impulse load respectively. 

 

9.1 Pressure load 

If a pressure load is acting on the system in Figure 9.1 the mass will move in the same 
direction as the load if the load is larger than the internal force. The system will 
accelerate as long as the value of the load is higher than the value of the internal force. 
Once the internal force equals the load the acceleration will stop and the system will 
achieve the maximum value of velocity. When the value of the internal force is higher 
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than the value of the load the retardation of the system starts. The maximum 
displacement is reached as the work performed by the external load equals the work 
carried out by the internal force, and the velocity then becomes zero. This course of 
events is shown in Figure 9.3. 

RP,

Acceleration 
of the system 

u  
maxu

RPc = Internal work

External work 

Retardation of 
system 

cPP =  

R  

 

Figure 9.3 Internal and external work for SDOF system subjected to pressure load. 

The expressions for external and internal work are used when deriving the maximum 
value of the characteristic pressure load, Pc, that the system can stand for an allowed 
maximum displacement umax. The maximum external and internal works are shown 
graphically as the areas in Figure 9.3 and the expressions for these areas are: 

∫
=

=

=Π
max

0

)(
uu

u
ernalint duuR  (9.1)

max, uPcPexternal =Π  (9.2)

As the maximum displacement is reached, and the velocity becomes zero, the internal 
work equals the external work, meaning that Equation (9.1) equals (9.2). Using this 
relation and rearranging the terms the expression for the maximum load that the 
system can stand for a given value of the allowed maximum displacement is: 

max

0

max

)(

u

duuR
P

uu

u
c

∫
=

==  
(9.3)

Hence, if a maximum displacement, umax, is allowed a maximum value of the pressure 
load according to Equation (9.3) is allowed. 
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9.2 Impulse load 

For a characteristic impulse load, Ic, the system, with a mass M, obtains an 
instantaneous and maximum velocity. The expression of the velocity can be derived 
by using the second law of Newton that normally is expressed as: 

aMP ⋅=  (9.4)

where  P  external load  [N] 

 M  mass  [kg] 

 a  acceleration  [m/s2] 

The acceleration can then be expressed (by rearranging the terms in Equation (9.4)) 
as:  

M
Pa =  (9.5)

By definition the acceleration is the first derivate of the velocity with respect to time 
and can be written as: 

( )v
dt
dva &==  (9.6)

Using Equations (9.5) and (9.6) gives: 

∫=⇒=
t

dt
M

tPv
M
P

dt
dv

0

)(  (9.7)

The mass is constant and the velocity can thus be expressed as: 

∫=
t

dttP
M

v
0

)(1  (9.8)

The impulse is represented by the area under the load curve as shown in Figure 9.4 
and is by definition: 

∫=
t

c dttPI
0

)(  (9.9)
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)(tP  

t  
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Figure 9.4 Characteristic impulse. 

Since the load duration of a characteristic load is infinity short the instantaneous 
velocity can be expressed by means of Equations (9.8) and (9.9). 

M
I

v c=  (9.10)

The characteristic impulse load is an idealized load not represented in the reality even 
though general impulse loads can resemble it. For these general impulse loads, where 
the load duration is not infinity short, the instantaneous velocity and hence the 
acceleration will depend also on the load-time relation. 

After removal of the load, due to the internal resistance, the velocity decreases. When 
the velocity, and consequently the kinetic energy, becomes zero the maximum 
displacement, and consequently the maximum internal work, is reached. Initially, 
when the displacement of the system is zero and thus the potential energy is zero, the 
external work has a maximum value. So, all kinetic energy becomes potential energy 
when the maximum displacement is reached. The expressions for the maximum 
internal and external work are: 

∫
=

=

=Π
max

0

)(
uu

u
ernalint duuR  (9.11)

M
IM

I
M

Mv c

c

Iexternal 222

2

2

2

, =








==Π  
(9.12)

For the maximum displacement Equation (9.11) equals Equation (9.12). Rearranging 
the terms gives the expression for the maximum value of the impulse load that the 
system can carry. 

∫
=

=

⋅=
max

0

)(2
uu

u
c MduuRI  (9.13)

So, if a maximum displacement, umax, is allowed a maximum value of the impulse 
load according to Equation (9.13) is allowed. 
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9.3 Determination of capacity for beams transformed to 
SDOF systems 

When determining the capacity for a beam transformed to a SDOF system 
Equations (9.3) and (9.13) are used but with equivalent values as described in 
Section 6.1. Equations (9.3) and (9.13) expressed with equivalent internal force Re, 
equivalent mass Me, equivalent pressure load Pce and equivalent impulse load Ice 
become: 

max

0

max

)(

u

duuR
P

uu

u
e

ce

∫
=

==  
(9.14)

∫
=

=

⋅=
max

0

)(2
uu

u
eece MduuRI  (9.15)

where 

cPce PP κ=  (9.16)

cPce II κ=  (9.17)

RR Ke κ=  (9.18)

MM Me κ=  (9.19)

and M is the total mass of the beam. 

Equations (9.16) to (9.19) inserted in Equations (9.14) and (9.15) gives: 

 
max

0

max

)(

u

duuR
P

uu

u
KPc

∫
=

== κ  
(9.20)

∫
=

=

⋅=
max

0

)(2
uu

u
MPKPc MduuRI κκ  (9.21)

where as before PKKP κκκ =  and PMMP κκκ = . 
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9.3.1 Linear elastic material 

For a linear elastic material the internal force, R, varies linearly with the displacement, 
u, as shown in Figure 9.5 and is expressed as: 

maxKuR
KuR

m =
=

 (9.22)

u

K  

R  

mR  

maxu   

Figure 9.5 Internal force for linear elastic material. 

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in 
Figure 9.5: 

2
)(

2
max

0

max Ku
duuR

uu

u

=∫
=

=

 (9.23)

By use of Equations (9.20), (9.21) and (9.23) the expressions for the pressure load and 
impulse load that the system can endure for a certain value of the allowed maximum 
displacement can be written as: 

222
max

max

2
max m

KPKPKPc
RKu

u
Ku

P κκκ ===  (9.24)

ω
κκκκκκ m

MPKPmMPKPMPKPc
R

R
K
MM

Ku
I === 2

2
max

2
2  (9.25)

where MK=ω  is the circular frequency of the SDOF system. 

In Figure 9.5 it can be seen that in case of linear elastic material the maximum 
displacement, umax, can be expressed as: 

K
R

u m=max  (9.26)
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Rearranging the terms in Equations (9.24) and (9.25) and using Equation (9.26) gives 
the expressions for the maximum displacement, umax, with respect to the pressure load 
and impulse load respectively. 

K
P

K
PR

Pu
KP

ccm
c κ

2)(
)(max ==  (9.27)

ωκκ
κκ

M
I

K
MKI

K
IR

Iu c

MPKP

MPKPccm
c

1)(
)(max ===  (9.28)

 

9.3.2 Ideal plastic material 

For an ideal plastic material the internal force, R, is constantly equal to the maximum 
internal force, Rm, when the displacement, u, is nonzero, as shown in Figure 9.6. 

u

R  

mR  

maxu  
 

Figure 9.6 Internal force for ideal plastic material. 

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in 
Figure 9.6: 

max
0

max

)( uRduuR m

uu

u

=∫
=

=

 (9.29)

By use of Equations (9.20), (9.21) and (9.29) the expressions for the pressure load and 
impulse load that the system can stand for a certain value of the allowed maximum 
displacement can be written as: 

mKP
m

KPc R
u

uR
P κκ ==

max

max  (9.30)

MuRMuRI mMPKPMPmKPc maxmax 22 κκκκ ==  (9.31)

In case of ideal plastic material the maximum displacement, umax, cannot be expressed 
with respect to the pressure load as in case of linear elastic material. However, by 
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using Equation (9.31) the maximum displacement, umax, can be expressed with respect 
to the impulse load. 

MR
I

Iu
mMPKP

c
c 2
)(

2

max κκ
=  (9.32)

 

9.3.3 Summary of capacity for beams transformed to SDOF systems 

The capacity of an equivalent SDOF system subjected to pressure and impulse load 
are determined for linear elastic material and ideal plastic material respectively. For a 
general shape of the deflection the beam equations are shown in Table 9.1. 

Table 9.1 General beam equations. 

I. Linear elastic material 

2
m

KPc
R

P κ=  (a)

MK
R

I m
MPKPc /

κκ=  (b)
 

K
P

Pu c

KP
c

21)(max κ
=  (c)

 

KM
I

Iu c

MPKP
c κκ

1)(max =  (d)

 
II. Ideal plastic material 

mKPc RP κ=  (e)
 

MuRI mMPKPc max2κκ=  (f)

MR
I

Iu
m

c

MPKP
c 2

1)(
2

max κκ
=  (g)

 
In Appendix G the expressions in Table 9.1 are developed for a simply supported 
beam as well as for a beam fixed in both ends subjected to a concentrated and 
uniformly distributed load. 
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9.4 Capacity for SDOF systems 

The equations in Table 9.1 can be written in a general form for a SDOF system by 
letting the equivalent values of the quantities be equal to the actual values. 

MM e =  (9.33)

RRe =  (9.34)

PPe =  (9.35)

Meaning that the transformation factors κ in Table 9.1 shall be 1.0 (compare to 
Equations (9.16) to (9.19)). The general equations for SDOF systems are shown in 
Table 9.2. 

Table 9.2 General equations for SDOF system 

I. Linear elastic material 

22
KuR

P m
c ==  (a)

MK
R

I m
c /

=  (b)
 

K
P

Pu c
c

2
)(max =  (c)

KM
I

Iu c
c =)(max  (d)

 
II. Ideal plastic material 

mc RP =  (e)
 

MuRI mc max2=  (f)

MR
I

Iu
m

c
c 2
)(

2

max =  (g)

 
 

The relation between the pressure load Pc and the impulse load Ic can be expressed for 
the different materials. In case of linear elastic material the fact that the maximum 
displacement umax shall be equal for the two loads can be used. 
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)()( maxmax cc IuPu =  (9.36)

Using (c) and (d) in Table 9.2 and using the circular frequency of vibration ω the 
relation between Pc and Ic in the linear elastic case can be expressed. 

mass  theis  and stiffness  theiswhere MK
M
K=ω  (9.37)

ω
ω 2
2 cccc PIIP =⇔=  (9.38)

In case of ideal plastic material the pressure load Pc must be equal to the maximum 
value of the internal force Rm if the system shall move. Using Equations (e) and (f) in 
Table 9.2 gives the relation between Pc and Ic for ideal plastic material. 

Mu
I

PMuPI c
ccc

max

2

max 2
2 =⇔=  (9.39)

where umax= umax(Ic). 
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10 Equivalent static load 
In order to simplify the analysis of a structure subjected to an impulse load the load 
can be transformed to a static equivalent load. This means a static load chosen in such 
a way that it will result in the same maximum displacement as the impulse load. 

As discussed in Section 9.2 the total energy, kinetic energy plus potential energy, for 
an undamped structure subjected to a dynamic load is constant. If the velocity 
(consequently also the kinetic energy) is zero the potential energy, as well as the 
displacement, has a maximum value. Even though it takes a while before the 
maximum velocity is reached when a dynamic load is applied it can be assumed that 
the maximum value of the kinetic energy occurs when the displacement is zero. This 
is at least a good approximation for a hard, short impulse loads. Hence, the maximum 
value of the kinetic energy equals the maximal value of the potential energy. In case 
of a static load there is only potential energy (no kinetic energy). 

Due to the condition that the displacement in case of a static load must equal the 
maximum displacement for the dynamic load the potential energy in the static case 
must equal the maximum potential energy for the dynamic load. Using this statement 
together with the statement made above gives: 

   Potential energy for static case = Maximum kinetic energy for dynamic case (10.1)

From this statement the expression of the equivalent static load Pstatic can be defined 
with respect to the characteristic impulse load Ic.  

 

10.1  SDOF system 

An SDOF system subjected to an impulse load will achieve vibrations and the 
instantaneous velocity, caused by a characteristic impulse load, derived in Section 9.2, 
is for a load, regarded as an impulse load, written as: 

M
Iv =  (10.2)

The maximum value of the kinetic energy is thus: 

M
I

M
IMMvWk 222

222

=





==  (10.3)

By means of the equations above the external work (the work due to the impulse) can 
be expressed as the difference in kinetic energy from time to time. 

M
II

Iexternal 2

2
1

2
2

,
−

=Π  (10.4)
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The maximum external work equals the maximum kinetic energy since the system is 
at rest before the load is applied, v1 = 0 and v2 = v = vmax, and therefore has no initial 
kinetic energy: 

{ }
M
III

M
I

Iexternal 22

2

2

2
2

, ====Π  (10.5)

The increase of work, staticPexternald ,Π , of the external static load causing a differential 
displacement du, for a system subjected to the static load Pstatic can be expressed as: 

duPd static
Pexternal static ⋅=Π ,  (10.6)

By integrating Equation (10.6) over the total displacement the total work of the 
external static load is achieved. 

∫
=

=

=Π
uu

u

static
Pexternal duPstatic

0
,

 (10.7)

The expression for the total work of the load will be different for different materials. 

 

10.1.1  Linear elastic material 

In case of linear elastic material the static external load, Pstatic, can be expressed by 
use of the stiffness, K, and the displacement u from the unloaded equilibrium position. 

uKP static ⋅=  (10.8)

Equations (10.7) and (10.8) give the total work of the external static load as: 

2

2

00
,

KuduKuduP
uu

u

uu

u

static
Pexternal static =⋅==Π ∫∫

=

=

=

=

 (10.9)

The total work of the external static load in Equation (10.9) shall be equal to the work 
of motion caused by the impulse load in Equation (10.5). 

( )
M
I

K
P

M
IKu static 2222

22
=⇒=  (10.10)

The static load equivalent to the impulse load acting on a SDOF system, with linear 
elastic behaviour, can now be expressed as: 

II
M
KP static

SDOF ω==  (10.11)

where ω is the circular frequency of the SDOF system. 
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10.1.2  Ideal plastic material 

In case of a SDOF system with ideal plastic behaviour subjected to a constant load 
Pstatic the displacement will go from 0  to u and the total external work can be 
expressed by use of Equation (10.7). 

uPduP static
uu

u

static
Pexternal static ⋅==Π ∫

=

=0
,

 (10.12)

The total work of the external static load in Equation (10.12) shall be equal to the 
work of motion, caused by the impulse load in Equation (10.5). 

M
IuP static

2

2

=⋅  (10.13)

The static load equivalent to the impulse load acting on a SDOF system, with ideal 
plastic behaviour, can now be expressed as: 

uM
IP static

SDOF ⋅
=

2

2

 (10.14)

 

10.2  Beams 

For beams the method of transforming the beams into SDOF systems shown in 
Chapter 6 is used. The expressions for the equivalent static load for beams are derived 
in the same manner as for the SDOF system (see Sections 10.1.1 and 10.1.2) but 
equivalent values of the mass, M, the internal force, R, and the external load, P, are 
used. The equivalent values of the mass, stiffness and external load are noted as Me, 
Re and Pe and are in Chapter 6 defined as: 

beamMe MM κ=  (10.15)

beamKe RR κ=  (10.16)

beamPe PP κ=  (10.17)

The transformation factors, κ, have different values depending on material and 
assumed shape of deformation and are shown in Table 6.1 for linear elastic and ideal 
plastic material. 

The internal stiffness of the beam, Kbeam, can be expressed as: 

∫
=

=

=
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beam dxtxq
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K

0
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1  (10.18)
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If the uniformly distributed load q(x,t) is varying in time the distributed impulse, i 
[Ns/m], can be expressed as: 

∫
=

=

=
2

1

),(
tt

tt

dttxqi  (10.19)

The total impulse acting on the beam is: 

dxdttxqdxiI
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10.2.1  Linear elastic material 

In case of linear elastic material the equivalent static load, to a general impulse load, 
acting on a SDOF system is determined by inserting Equations (10.15) to (10.17) and 
(10.20) into Equation (10.11). 
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(10.21
)

where transformation factors for linear elastic behaviour shall be used. 

The beam capacity can also be analysed by using an, to the general impulse load, 
equivalent static load directly on the beam. If this equivalent static load is a 
concentrated load acting in the system point the expression is: 
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If the equivalent static load is a uniformly distributed load acting on the beam the 
expression is: 

dxdttxq
M
K

LL
P

q
Lx

x

tt

ttbeamM

beamK

P

static
beamstatic

beam ∫ ∫
=

=

=

=

==
0

2

1

),(1
κ
κ

κ
 (10.23)

If the impulse load is a concentrated load the impulse can be written as: 

∫
=

=

=
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1

)(
tt

tt

dttPI  (10.24)

and Equations (10.22) can be expressed as: 
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If the impulse load is a uniformly distributed load the impulse can be written as: 

∫
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and Equations (10.23) can be expressed as: 
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10.2.2  Ideal plastic material 

In case of ideal plastic material the equivalent static load, to a general impulse load, 
acting on a SDOF system is determined by inserting Equations (10.15), (10.17) and 
(10.20) into Equation (10.14). 
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where transformation factors for ideal plastic behaviour shall be used. 

The beam capacity can also be analysed by using an, to the general impulse load, 
equivalent static load directly on the beam. If this equivalent static load is a 
concentrated load acting in the system point the expression is: 
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If the equivalent static load is a uniformly distributed load acting on the beam the 
expression is: 
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If the impulse load is a concentrated load the impulse can be written as: 

∫
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and Equation (10.30) can be expressed as: 
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If the impulse load is a uniformly distributed load the impulse can be written as: 

∫
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and Equation (10.31) can be expressed as: 
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11 Damage curves 
In Section 6.2.3 the relation between deformation and load are shown for the extreme 
load duration cases that is obtained when the system is subjected to a characteristic 
pressure and impulse load, respectively. In order to calculate this relation for a general 
load, as schematically shown in Figure 11.1 so called damage curves can be used. 

)(tP  

t  

1P  

1t  

I  

 

Figure 11.1 General load-time relation. 

Damage curves are valid for an SDOF system or an equivalent SDOF system. In this 
chapter the notations of the quantities are written in a general form. If it is an 
equivalent SDOF system the following equations are valid: 

ePP =  (11.1)

eRR =  (11.2)

eMM =  (11.3)

Where the index e indicates that it is the equivalent value of the quantity. 

 

11.1  Calculation equations 

The differential equation for an SDOF system, when damping is neglected, is: 

)(tPRuM =+&&  (11.4)

and can for a general case be solved by use of for example the central difference 
method described in Section 5.2. 

Using the relative simplicity to analyse structures subjected to pressure load, Pc, and 
impulse load, Ic, the results from the general load case will be related to these results. 
So, if a structure can endure the extreme values Pc and Ic obtaining maximum 
deformation umax, the structure also will endure every general load (see Figure 11.1), 
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resulting in a displacement less or equal to umax. This discussion can be concluded in 
the following two equations, where fp and fI indicates functions and fp ≠ fI. 


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=

c
I

cc
P

c I
If

P
P

P
P

f
I
I 11  (11.5)

The relation between I and Ic is called the impulse load factor and is written as: 

c
I I

I=γ  (11.6)

The relation between P1 and Pc is called the pressure load factor and is written as: 

c
P P

P1=γ  (11.7)

The strategy to calculate the impulse load factor and the pressure load factor are 
further discussed in Sections 11.1.1 and 11.1.2. 

Calculations are here made for three different types of transient loads as shown in 
Figure 11.2. The expression for the loads are: 

( )nttPtP 11 1)( −=  (11.8)

where n is given in Figure 11.2. 
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1P  
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0=n  1=n  2=n  
a) b) c)  

Figure 11.2 Transient loads; a) rectangular load b) triangular load and c) 
quadratic decreasing load. 

 

11.1.1  Linear elastic material 

In case of linear elastic material the internal resistance is proportional to the 
displacement, R=Ku and Equation (11.4) can be written as: 

)(tPKuuM =+&&  (11.9)
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11.1.1.1 Pγ  known 

When the pressure load factor γP and either Pc or P1 are known the value of the 
corresponding Pc or P1 can be calculated by use of Equation (11.7). Ic can be 
calculated with Equation (9.38). 

ω
2

cc PI =  (11.10)

The time t1 for the general load can be calculated by solving Equation (11.9) with the 
central difference method (see Section 5.2) in an iterative process where the 
maximum displacement caused by the general load shall equal the maximum 
displacement due to the pressure load Pc, see Table 9.2: 

K
P

Pu c
c

2
)(max =  (11.11)

When the time t1 is calculated the impulse I is calculated as: 
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For the rectangular load in Figure 11.2.a the impulse I is: 
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The triangular load in Figure 11.2.b results in the impulse I: 
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 (11.14)

For the quadratic decreasing load in Figure 11.2.c the impulse I is: 
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 (11.15)

By using Equation (11.6) the impulse load factor γI can be calculated. 

 

11.1.1.2 Iγ  known 

When the impulse load factor γI is known and either Ic or I1 are known the value of the 
corresponding Ic or I1 can be calculated by use of Equation (11.6). Pc can be 
calculated with Equation (9.38). 
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2
ω

cc IP =  (11.16)

The time t1 for the general load can be calculated by solving Equation (11.9) with the 
central difference method (see Section 5.2) in an iterative process where the 
maximum displacement caused by the general load shall equal the maximum 
displacement due to the impulse load Ic, see Table 9.2: 

KM
I

Iu c
c =)(max  (11.17)

The maximum value of the general load P1 is not known in the iterative process but 
the relation between P1 and the impulse is known for the different load cases (see 
Equation (11.12)). For the rectangular load in Figure 11.2.a the maximum value P1 of 
the transient load is, see Equation (11.13): 

1
1 t

IP =  (11.18)

The maximum value of the transient load in Figure 11.2.b is, see Equation (11.14): 

1
1

2
t
IP =  (11.19)

For the quadratic decreasing load in Figure 11.2.c the maximum value of the load is, 
see Equation (11.15): 

1
1

3
t
IP =  (11.20)

When the time t1 and the corresponding value of P1 are known Equation (11.7) is used 
to calculate the impulse load factor γP. 

 

11.1.2  Ideal plastic material 

In case of ideal plastic material the internal force has a constant value, R=Rm if 
P1 ≥ Rm and if u ≠ 0 and Equation (11.4) can be written as: 

)(tPRuM m =+&&  (11.21)

If P1 < Rm there will be no motion (u = 0 for all times) since Equation (11.4) is then: 

0=uM &&  (11.22)

The characteristic value of the pressure load Pc equals the maximum value of the 
internal force Rm in case of ideal plastic material. 
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11.1.2.1 Pγ  known 

The relation between γP and γI is definite determined so when γP and Ic is known the 
maximum displacement umax can be calculated by use of Equation (g) in Table 9.2: 

MR
I

Iu
m

c
c 2
)(

2

max =  (11.23)

Observe that umax(Pc) is undefined. 

Solve, by means of an iterative process, the load duration time t1 with 
Equations (11.18) to (11.20) so umax(P1,t1) equals umax(Ic). Now the value of I is 
calculated by  inserting t1 into Equations (11.18) to (11.20). By using Equation (11.6) 
the impulse load factor γI can be calculated. 

 

11.1.2.2 Iγ  known 

When the impulse load factor γI is known and either Ic or I1 are known the value of the 
corresponding Ic or I1 can be calculated by use of Equation (11.6). The maximum 
displacement umax can be calculated by use of Equation (g) in Table 9.2: 

MR
I

Iu
m

c
c 2
)(

2

max =  (11.24)

The time t1 for the general load can be calculated by solving Equation (11.9) with the 
central difference method (see Section 5.2) in an iterative process where the 
maximum displacement caused by the general load shall equal the maximum 
displacement due to the impulse load Ic, see Equation (11.16) and Table 9.2: 

The maximum value of the general load P1 is not known in the iterative process but 
the relation between P1 and the impulse is known for the different load cases (see 
Equation (11.12)). The maximum value P1 of the loads, shown in Figure 11.2, are 
calculated in the same way as in case of linear elastic material, see Equations (11.18) 
to (11.20). 

When the time t1 and the corresponding value of P1 are known Equation (11.7) is used 
to calculate the impulse load factor γP. 

 

11.2  Results 

Table 11.1 and Table 11.2 show the relation between the pressure factor and the 
impulse factor for the three transient load cases shown in Figure 11.2 when having 
linear elastic and ideal plastic behaviour, respectively. In Appendix H more complete 
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tables of damage are shown, see Table H.1 and Table H.2, the values in Table 11.1 
and Table 11.2 are extracts from these. 

The tables says that if a certain allowed displacement u is wanted and the 
characteristic pressure load Pc and impulse load Ic result in this displacement the 
maximum allowed value of the impulse I can be estimated if the maximum value of 
the load P1 is known and vice versa. For example: 

•  If P1 is allowed to be 2 times larger than Pc (γP = 2) the maximum, allowed 
value of the impulse is I = γI·Ic = 1.166·Ic in case of linear elastic and 
triangularly decreasing load (n=1). 

•  In the same way; the maximum value of P1 is allowed to be 
P1 = γP·Pc = 1.269·Pc if the impulse I is allowed to be 5 times larger than Ic 
(γI = 5) in case of ideal plastic material and triangularly decreasing load (n=1). 

Table 11.1 Relation between Pγ  and Iγ  for linear elastic and ideal plastic 
material respectively when Pγ  is known. 

c
I I

I=γ  

Linear elastic behaviour Ideal plastic behaviour 

c
P P

P1=γ  
n =0 n =1 n =2 n =0 n =1 n =2 

1.01 1.444 41.13 65.15 10.05 441.8 587.5 

1.05 1.324 8.491 11.17 4.583 42.87 56.25 

1.1 1.255 4.570 5.931 3.317 16.57 21.58 

1.5 1.095 1.490 1.776 1.732 2.756 3.330 

2 1.047 1.166 1.293 1.414 1.732 1.957 

3 1.020 1.057 1.094 1.225 1.342 1.414 

5 1.007 1.019 1.029 1.118 1.168 1.196 

10 1.002 1.005 1.007 1.054 1.074 1.085 

100 1.000 1.000 1.000 1.005 1.001 1.007 
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Table 11.2 Relation between Pγ  and Iγ  for linear elastic and ideal plastic 
material respectively when Iγ  is known. 

c
P P

P1=γ  

Linear elastic behaviour Ideal plastic behaviour 

c
I I

I=γ  
n =0 n =1 n =2 n =0 n =1 n =2 

1.01 4.144 6.813 8.525 50.72 67.67 76.13 

1.05 1.959 3.177 3.911 10.76 14.34 16.14 

1.1 1.469 2.389 2.924 5.763 7.688 8.645 

1.3 1.066 1.691 1.984 2.452 3.269 3.678 

1.5 1.003 1.493 1.694 1.800 2.400 2.700 

2 1.000 1.296 1.409 1.333 1.775 1.966 

3 1.000 1.167 1.228 1.125 1.453 1.562 

5 1.000 1.090 1.122 1.042 1.269 1.367 

10 1.000 1.042 1.056 1.010 1.148 1.182 

100 1.000 1.005 1.013 1.001 1.028 1.034 

 

Figure 11.3 and Figure 11.4 show the tables of damage, Table 11.1 and Table 11.2, 
graphically for the transient loads in Figure 11.2 for linear elastic and ideal plastic 
material respectively. The diagrams are called damage curves. 
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Figure 11.3 Damage curves for rectangular load pulse (n=0), triangular load pulse 
( n =1) and quadratic decreasing load pulse (n=2) in case of linear 
elastic material 
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Figure 11.4 Damage curves for rectangular load pulse ( n =0), triangular load pulse 
( n =1) and quadratic decreasing load pulse ( n =2) in case of ideal 
plastic behaviour 
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11.3  Practical use of tables of damage 

11.3.1  Solution process 

In practise, different inputs are known when using the tables of damage. Here some 
different cases are discussed. 

The approach is the same for linear elastic material and ideal plastic material. The 
relation between γP and γI (and thus P1/Pc and I/Ic) in case of linear elastic material 
and ideal plastic material are shown in Table H.1 and Table H.2 in Appendix H, 
extracts from these tables are shown in Table 11.1 and Table 11.2. 

Known: 1P , cP  and thus also cI  
Searched: allowed load duration time 1t  

a. The pressure load factor Pγ  is calculated, cP PP1=γ  

b. The corresponding value of Iγ  are determined by means of tables of 
damage. 

c. I  are determined from IcII γ⋅=  

d. The allowed load duration time 1t  is calculated by use of ∫
=

=
1

0

)(
t

t

dttPI  

Known: cI , I  and thus also cP  
Searched: allowed load duration time 1t  

a. The pressure load factor Iγ  is calculated, cI II=γ  

b. The corresponding value of Pγ  are determined by means of tables of 
damage. 

c. 1P  are determined from PcPP γ⋅=1  

d. The allowed load duration time 1t  is calculated by use of ∫
=

=
1

0

)(
t

t

dttPI  

Known: 1P , 1t , Iγ  and ω2=cc PI  
Searched: cP  and cI  (see also example below) 

a. Calculate the impulse, ∫
=

=
1

0

)(
t

t

dttPI  
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b. Determine a value of 
1P

P
I
I c

cP

I ⋅=
γ
γ

 where the relation between I  and 

1P  are found in point a. above 

c. Find in the tables of damage (Appendix H) a combination of Iγ  and 

Pγ  fulfilling 
P

I

γ
γ

 in point b. above 

d. Calculate 
I

c
II

γ
=  and 

P
c

P
P

γ
1=  (in order to check the results it can be 

controlled if ω2=cc PI  and if )()( maxmax cc PuIu = ) 

 

11.3.2  Example 

Assume linear elastic material and that P1, t1 and Pc/Ic = 2/ω are known and search for 
Pc and Ic. The beam for which the characteristic pressure and impulse load shall be 
calculated is the reinforced fixed concrete beam subjected to a uniformly distributed 
load used in Chapter 7, with density ρ=2400 kg/m3. This beam is also analysed in 
Appendix D, Section D.2.4, where the values of the stiffness K is calculated. Since 
linear elastic material is assumed these transformation factors are used, see Table 6.1. 
The load and load duration t1 represents an, to the equivalent static load q=50 kN/m2 
from the Swedish shelter regulations, Räddningsverket (2003), approximated transient 
load.  

125001 =P  kN, 12.11 =t  ms, 210024005.235.00.1 =⋅⋅⋅=⋅⋅⋅= ρLhbM  kg, 

1456
2100762.0

1033920.1 6

=
⋅

⋅⋅==
M
K

el
MP

el
KP

κ
κω  rad/s 

The approximated transient load is assumed to be triangular in time (as shown in 
Figure 11.2.b). 









−=

1
1 1)(

t
tPtP  

a. The impulse I  is calculated: 

7000
2

12.112500
2

1)( 11

0 1
1

0

11

=⋅=
⋅

=







−== ∫∫

tP
dt

t
tPdttPI

tt

 Ns 

b. The relation 
P

I

γ
γ

 is: 
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408.0
21012500

14567000
2 3

11

=
⋅⋅

⋅=⋅=⋅= ω
γ
γ

P
I

I
P

P
I

c

c

P

I  

c. Search in the tables of damage for linear elastic material (see Appendix H) for 

a combination of Iγ  and Pγ  fulfilling 408.0=
P

I

γ
γ . 

In Table H.1 in Appendix H it can be seen that Iγ  is in between 2.6 and 2.8 

since 4154.0=
P

I

γ
γ  when 6.2=Pγ  and 3812.0=

P

I

γ
γ  when 8.2=Pγ . Linear 

variation is assumed in between these values (as shown in Figure 11.5) and the 
values of Iγ  and Pγ  can be calculated as: 

( ) ( ) 08.107.107.108.1
381.0415.0
381.0408.0 =+−

−
−=+−









−

















−









= I,minI,minI,max

minP

I

maxP

I

minP

I

knownP

I

I γγγ

γ
γ

γ
γ

γ
γ

γ
γ

γ

64.2
408.0
08.1

408.0
408.0 ===⇒= I

P
P

I γγ
γ
γ  

d. The values of cP  and cI  can now be calculated: 

4735
64.2

125001 ===
P

c
P

P
γ

 kN 

6500
08.1

7000 ===
I

c
II

γ
 Ns 

Checks: 

 
ω

ω
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22
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3

3
3
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
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⋅=
⋅

=

−

−

c
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c

P
IP

I
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16001456
104735222)(
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Figure 11.5 Linear variation is assumed between the values in Table H.1 in 
Appendix H. 

 

11.4  Practical use of damage curves 

11.4.1  Solution process 

The damage curves can be used to determine the maximum impulse and pressure 
values of a general load corresponding to a certain maximum displacement umax. This 
method can be apprehended as old-fashioned compared to other methods, especially 
today when computational tools are easily accessible, but it shows principally how 
general loads can be interpreted. 

The characteristic impulse and pressure loads are calculated by means of umax as 
shown in Section 9.4 and together they represent the characteristic point 
corresponding to the origin, (γI, γP)=(1,1), in the damage curves above (see Figure 
11.3 and Figure 11.4). One way to perform the analysis is shown: 

1 Plot the damage curve of interest on a transparent paper, as shown in Figure 
11.6. If the analysis is made on a computer no transparent papers are needed, 
instead the following points are performed directly in the computer. 

P

I

γ
γ  

Iγ

maxI ,γIγ  minI ,γ  

( )maxPI γγ  

( )knownPI γγ  

( )minPI γγ  

( ) ( )
( ) ( ) ( ) minIminII

minPImaxPI

minPIknownPI
I ,, γγγ

γγγγ
γγγγγ +−

−
−

=
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Figure 11.6 Diagram for linear elastic material and n=1, see Figure 11.3. 

2 Plot coordinate axis, in the same scale as for point 1 above, on a new paper. 
The impulse load I shall be plotted on the horizontal axis and the maximum 
value of the pressure load P1 on the vertical axis. Diagonals shall also be 
drawn where I/P1 is constant. The diagonals in Figure 11.7 correspond to 
t1=(n+1) I/P1 where the load with n=1 is used, see Figure 11.2. 

 

Figure 11.7 Diagram for damage curve with same scale as in Figure 11.6 for n=1 
(see Figure 11.2.b). 

3 Mark the characteristic point in the diagram where the characteristic point is 
the values of Ic and Pc give umax. Draw a vertical line marking the value of cI  
and a horizontal line marking the value of Pc, see Figure 11.8. 

4 Lay the transparent paper with the damage curve from Figure 11.6 on the 
diagram in Figure 11.7 where also the characteristic point (see point 3) is 
plotted. The asymptotes in Figure 11.6 shall coincide with the lines plotted in 
point 3. 

1

10

100

1 10 100

I [MN*ms]

P1
 [M

N
]

t1=2 ms 

t1=4 ms 

t1=10 ms 
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5 The created damage curve is now representing all combinations of P1 and I, 
for a certain load-time curve and material, giving the maximum displacement 
umax for which Ic and Pc have been calculated. The diagonal lines give 
information about the time duration t1. 

 

11.4.2  Example 

The same beam as used in the example in Section 11.3.2 is used here but here the 
values of P1 and I shall be estimated by use of damage curves. The maximum allowed 
displacement umax corresponds to umax(Pc) = umax(Ic) calculated in example in 
Section 11.3.2. Also here linear elastic material is assumed: 

maxu =2.79 mm, == MM el
MPe κ 0.762·2100=1600 kg, ==

M
K

el
MP

el
KP

e κ
κω 1456 rad/s, 

12.12

1
1 ==

P
It  ms 

Search for the values of the maximum value of the load P1 and the impulse I resulting 
in the maximum allowed displacement umax. 

The load is assumed to be triangular in time (as shown in Figure 11.2.b). 









−=

1
1 1)(

t
tPtP  

The characteristic values of the impulse and pressure load, Ic and Pc, is calculated by 
use of Equation c) and d) in Table 9.1: 

kN4732
2

160014561079.2
2

22
)(

232

2max

=

=⋅⋅⋅==⇔==
−Mu

P
M

P
K

P
Pu

el
MPemax

cel
MPe

c
el
KP

c
c

κω
κωκ

 

Ns6500160014561079.2

1)(

3 =⋅⋅⋅=⋅⋅=

⇔==

−MuI

M
I

KM
I

Iu

el
MPemaxc

el
MPe

cc

el
MP

el
KP

cmax

κω

κωκκ  

By following point 1 to 5 above the damage curve of interest is created and the values 
of the impulse and maximum pressure load can be determined, see Figure 11.8. 

 7000=I  Ns and 125001 =P  kN 

If the maximum allowed displacement for a SDOF system umax is 2.79 mm and the 
mass and circular frequency is 1600 kg and 1456 rad/s respectively the maximum 
value of the pressure load (which is triangular in time) is P1=12500 kN. The 
maximum allowed impulse is I=7000 Ns if the time duration of the load t1 is 1.12 ms. 
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Figure 11.8 Diagram for damage curve for example 1. 

If the duration of the load t1 instead was 5 ms the values of P1 5850 kN is and I is 
14500 Ns, see Figure 11.9. 

 

Figure 11.9 Diagram for damage curve for example 1, if t1= 5 ms. 
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12 Concrete 
Principal relations between the load and deflection of a simply supported, reinforced 
concrete beam for different loading cases are shown in Figure 12.1 where the loads 
are applied by gradual stages. 

 
qPM ,,  

u

q  

P

M M

u

u

u

First crack appears 

Yielding in steel 
or concrete 

Failure

 

Figure 12.1 Principal relations between load and deflection of a simply supported 
beam subjected to different loads based on Svensk byggtjänst (1990). 

At first the beam is uncracked and the bending stiffness of the beam is high. The 
deflection of the beam increases linearly with the load, the beam is in stadium I. When 
the load has reached a value that gives stresses in the most tensioned section that is 
equal to the flexural strength of the concrete the section will crack. Due to the crack 
the change of stiffness is sharp, now the reinforcement in the tensioned zone carries 
the tensional forces. For increasing load more and more cross-sections will crack, but 
this will not influence the behaviour of the beam very much and the deflections 
increases almost linearly with the increasing load, the beam is in stadium II. 
Reinforced beams are normally designed to get yielding in the reinforcement before 
the ultimate compressive strain is reached. When the reinforcement starts to yield the 
beam gets a plastic behaviour and the deflection increases even though the load is 
almost constant, the beam is in stadium III. At last the beam can not endure the load 
and there will be flexural failure. 

An idealization of the load-displacement relation is shown in Figure 12.2 where Pcr is 
the load for which the first crack occurs and ucr is the corresponding deflection. Ppl is 
the ultimate load and upl is the corresponding deflection. K is the stiffness of the 
uncracked beam and K’ is the inclination of the load-displacement curve after the first 
crack occurs. In the following analyses of reinforced beams it is assumed that the steel 
starts to yield before the concrete and the load for which yielding starts in the steel is 
Pspl and uspl is the corresponding deflection. This idealized behaviour of a reinforced 
concrete beam will be used in this report and the idealized relation between the load 
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and deflection can be found by using crack and failure criteria as shown in 
Section 12.2. 

 P 

u 
K  

K ′  

plP  

crP

crP
cru  plu  

P

u 
K  

K ′  

plP  

crP

crP
cru  splu  

splP  splP  

splu  

Failure 

Yielding in steel 

First crack occurs

  a)      b) 

Figure 12.2 a) Idealized load-displacement curve used in this report b) idealized 
principal load-displacement curve for reinforced concrete beam, based 
on Figure 12.1. 

 

12.1  Material behaviour 

A structure subjected to a dynamic load behaves different from a structure subjected 
to a static load especially when the load is an intensive impulse load with short 
duration.  

The strain velocity ε& , defined as the strain per time unit, describes how fast the 
material deforms and is defined as: 

t∆
= εε&   (12.1)

The faster the load is applied to the structure the higher strain velocity is attained in 
the concrete. In Figure 12.3 strain velocities for some different load situations are 
shown. 

 

Figure 12.3 Strain velocity for common load situations. From Räddningsverket 
(2004). 
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By experimental tests it has been found that if the strain velocity is higher than 10 s-1 
the dynamic magnification factor, defined as the relation between the dynamic and the 
static strength, can be more than doubled if the concrete is compressed and magnified 
by up to seven if the concrete is tensioned, Räddningsverket (2004). The relation 
between the strain velocity and the dynamic magnification factor are shown in Figure 
12.4 and Figure 12.5 for compressed and tensioned concrete respectively. 

Dynamc magnification factor 

10-8 10-7  10-6  10-5  10-4  10-3  10-2  10-1  100  101   102   103 

Strain velocity [s-1] 

2.5 

2.0 

0.5 

1.5 

1.0 

 

Figure 12.4 Relation between dynamic magnification factor and strain velocity for 
compressed concrete, experimental results. From Räddningsverket 
(2004). 

  

Figure 12.5 Relation between dynamic magnification factor and strain velocity for 
tensioned concrete, experimental results. From Räddningsverket 
(2004). 
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The increased strength for concrete structures subjected to dynamic loads, discussed 
above, can partly be explained by the crack way trough the material. When a concrete 
specimen is subjected to a static tensional force the cracks will find the most energy 
effective way through the concrete. Since the ballast often is stronger than the paste in 
concrete the most energy effective way is to go in the paste around the ballast, see 
Figure 12.6. In case of dynamic loading there is no time for this and the cracks are 
very often forced to go also through the ballast, which gives a higher tensile strength 
of the concrete. Even though each individual crack will be more brittle in case of 
dynamic loading more cracks will appear and the overall ability to take up energy 
may increase somewhat. The increased strength of the concrete can also be explained 
by viscose effects. 

 

Figure 12.6 Principle crack way for static and dynamic load respectively. Based on 
Räddningsverket (2004). 

A concrete beam subjected to a dynamic load behaves differently from the static load 
case, especially initially. For a very fast load application there can be local failures in 
some sections of the beam before other parts even are aware of the load (principle 
illustrated in Figure 12.7). This phenomenon can be explained by the time required to 
spread the information of the external load in the material. For concrete the 
longitudinal wave velocity is approximately 3500 m/s and for a 2.5 meter long beam 
subjected to a concentrated load, applied at the midpoint, it will take 

36.0350025.1 ≈  ms until the information has reached the supports. 

Microcracks 

Macrocracks 

Paste 

Ballast 

Static Dynamic 
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Figure 12.7 Principle initial behaviour of beam subjected to a dynamic 
concentrated load. 

When using equivalent static loads this initial behaviour is not taken into account even 
though the use of equivalent static load gives a well estimated value of the maximum 
displacement. 

 

12.2 Analysis of cross-sections subjected to bending 

Due to the complexity of the behaviour of a reinforced concrete beam the analysis is 
made in different stages depending on if cracks have occurred or not. Analyses of 
cross-sections in stadium I and II are in case of static load often calculated in service 
limit state but since all calculations when designing shelters shall be made in ultimate 
limit state (Räddningsverket (2003)) only this case are treated here. Also analyses of 
cross-sections in stadium III are made in ultimate limit state. By following Engström 
(2001) the expressions useful in the analysis are stated for stadium I, II and III 
respectively.  

In ultimate limit state safety factors are used when calculating the design values of the 
material properties. 

nm

k
d

f
f

γηγ
=   (12.2)

nm

k
d

E
E

γηγ
=   (12.3)

In the Swedish shelter regulation the design value of the tensile stress for the steel is: 

ykst ff 9.0=   (12.4)

The partial safety factor γn (in Equations (12.2) and (12.3)) taking the safety class into 
consideration is equal to 1.0 in case of accidental load, no matter which safety class it 
is. The product of the safety factor γm (in Equations (12.2) and (12.3)) taking the 

Zones with risk of cracking 
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insecurity when determining the material parameters and η are, for accidental load, 
shown in Table 12.1. 

Table 12.1 Partial safety factors for concrete and reinforcing steel for accidental 
load. 

Material mηγ

Strength parameters 1.2 
Concrete 

Modulus of elasticity 1.0 

Strength parameters 1.0 
Reinforcing steel

Modulus of elasticity 1.0 

 

Due to the fact that the compressive strength of concrete increases the faster the load 
is applied the design value of the compressive strength can be increased when the load 
is an accidental load with dynamic behaviour. 

ccd
accidental

ccd ff 1.1=   (12.5)

In case of dynamic load a higher value of the modulus of elasticity for the concrete is 
used, according to the Swedish design code BBK 04, Boverket (2004): 

nm

ckdynamic
cd

E
E

γηγ
⋅

=
2.1

  (12.6)

 

12.2.1  Calculations in stadium I and II  

Stadium I is earlier defined as the stadium when the cross-section is uncracked and 
stadium II is defined as the stadium when the cross-section is cracked but there is still 
no yielding of the material. In stadium I and II the beam has elastic behaviour. 

 

12.2.1.1 Strain distribution for the cross-section 

The deformation of the cross-section is described by the strain distribution which is 
characterized by a mean strain εcm and a curvature 1/r, see Figure 12.8. The mean 
strain represents the strain in the centre of gravity of the cross-section meaning the 
centre of gravity of the transformed cross-section calculated with respect to stiffness. 
The meaning of a transformed cross-section is further explained in Section 12.2.1.3. 
The curvature is represented by the strain gradient meaning the inclination of the 
strain curve. 
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Figure 12.8 The deformation of the cross-section is described by the strain 
distribution based on Engström (2001). 

At a distance z form the centre of gravity the strain can be seen as a result of the mean 
strain plus a strain depending on the curvature as: 

z
r

z cmc
1)( += εε   (12.7)

The curvature is expressed by using the radius of curvature r. The curvature can be 
seen as the change of angle per unit length and can for a beam element with constant 
value of the curvature be expressed as: 

dx
d

r
ϕ=1   (12.8)

where dφ is the change of angle over the element length dx. The meanings of the 
notations are also seen in Figure 12.9. 

 

Figure 12.9 Relation between the radius of curvature and flexural deformation for a 
beam element with constant curvature based on Engström (2001). 

The neutral layer is defined as the layer in the cross-section where the strain and the 
stress is zero. In case of pure bending the neutral layer coincides with the centre of 

ccε  

CGx  

Centre of gravity 
(CG) 

r
1

z
 

cmε  

dx  CGx  

r  

ϕd  
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gravity meaning that the mean strain εcm is zero and the strain at a distance z from the 
centre of gravity is: 

z
r

zc
1)( =ε  (12.9)

 

12.2.1.2 Assumptions 

The analysis methods described in this chapter are used to calculate normal stresses in 
cross-sections subjected to pure bending (no axial forces are present). The strain 
distribution is assumed to be linearly over the height of the cross-section and full 
interaction is assumed between the steel and the concrete. The meaning of the full 
interaction between the steel and the concrete is illustrated in Figure 12.10 where the 
concrete strain εc equals the steel strain εs at the level of the reinforcement. 

 

Figure 12.10 Strain distribution in uncracked rectangular cross-section of reinforced 
concrete subjected to pure bending. 

εc1 and εc2 are the concrete strain in the compressed and tensioned edges respectively 
and xCG is the distance from the compressed edge to the centre of gravity calculated 
with respect to stiffness. The cross-section is subjected to a moment M. 

In stadium II, when the beam is cracked due to bending, the influence of the concrete 
in tension underneath the neutral layer is neglected even tough the tensioned concrete 
in between the cracks influences the load carrying capacity of the beam. The influence 
from the tensioned concrete is largest directly after the appearance of the first crack 
and decreases when the load increases, see Figure 12.11. 

Yielding are here assumed to always start in the steel meaning that the steel in the 
tensile zone is assumed to reach the yield stress before the concrete strain in the 
compressed edge reaches the ultimate concrete strain.  

2cε

1cε  

sε

M  CGx

z
Centre of gravity
(CG) 

d
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Figure 12.11 Principal relation between the moment and mean curvature for zone 
with flexural cracks. Influence from tensioned concrete between the 
cracks result in a relation that smoothly approach the stadium II 
stiffness. 

Since stadium I or II is assumed elastic response is assumed for both concrete and 
reinforcement steel. 

ccc E εσ =   (12.10)

sss E εσ =   (12.11)

where cσ  normal stress in concrete 

cE  modulus of elasticity for concrete 

cε  concrete strain 

sσ  normal stress in steel 

sE  modulus of elasticity for steel 

sε  steel strain 

All analyses and calculation method used in this chapter neglects long time influences 
such as shrinkage and creep deformations. 

 

12.2.1.3 Transformed cross-section 

In order to facilitate the calculations the steel and concrete cross-section can be 
replaced with an equivalent concrete cross-section, also called a transformed cross-
section, without influencing the results. The expressions for the area of the 
transformed cross-section, for a double reinforced concrete beam, in stadium I is: 

r
1

crM  
Stadium II 

Stadium I 

IEI  

IIEI

M  

crM - crack moment
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sscI AAAA )1()1( −+′−+= αα   (12.12)

where cA   whole area of the concrete (without reduction for the 
reinforcement area) 

′
sA  area of compressed reinforcement 

sA   area of tensioned reinforcement 

The factor α is the relation between the modulus of elasticity for steel and concrete 
and is defined as: 

c

s

E
E

=α   (12.13)

For cracked cross-sections (stadium II) the transformed cross-section is (using the 
same notations as in Equation (12.12)): 

ssccII AAAA αα +′−+= )1(   (12.14)

where Acc is the area of the compressed zone (without reduction for the reinforcement 
area). 

 

12.2.1.4 Crack criteria 

Due to the crack criterion for a beam subjected to pure bending the cross-section will 
remain uncracked as long as the maximum value of the tensional stress fulfils: 

ζ
σ cbt

ct
f

<max,   (12.15)

ζ is the crack security factor chosen to be 1.0 in order to assume a realistic crack 
pattern  and fcbt is the flexural strength calculated as: 

ctcbt fkf ⋅=  

4

4.06.0
h

k +=      and     45.10.1 ≤≤ k  
(12.16)

where h is the total height of the beam and fct is the concrete tensile strength. 

This means that the cross-section will crack when the maximum value of the tensile 
stress is: 
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ζ
σ cbt

ct
f

=max,   (12.17)

In Navier’s formula the concrete stresses in the cross-section can be calculated by 
using the moment M in the cross-section together with the equivalent value of the 
moment of inertia, II and III respectively and the distance from the neutral layer. With 
z defined as shown in Figure 12.8 the stress in the concrete for an uncracked cross-
section is calculated as: 

z
I
Mz

I
c =)(σ   (12.18)

In case of a cracked cross-section the concrete stress at distance z from the neutral 
layer is calculated as: 

z
I
Mz

II
c =)(σ   (12.19)

 

12.2.1.5 Reinforced cross-section in stadium I 

Studying the uncracked single symmetric cross-section in Figure 12.10 subjected to 
pure bending. The tensioned reinforcement, with total area As, is placed in the 
tensioned zone at the distance zs from the neutral layer and the compressed 
reinforcement, with a total area As’, is placed in the compressed zone. 

CGs xdz −=   (12.20)

Here d is the effective height of the cross-section meaning the distance from the 
compressed edge to the layer of reinforcement. xCG is the distance from the 
compressed edge to the centre of gravity calculated with respect to the stiffness (see 
Figure 12.10). 

Due to the assumption of full interaction between the steel and the concrete the steel 
stress can be calculated as: 

)( scs zασσ =   (12.21)

where the concrete stress at the reinforcement layer σc(zs) is calculated as shown in 
Equation (12.18): 

s
I

sc z
I
Mz =)(σ   (12.22)

where the moment of inertia in case of an uncracked cross-section is calculated as: 
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( ) ( )22
3

)1()1(
12 CGsCGsI xdAdxAbhI −−+′−′−+= αα   (12.23)

 

12.2.1.6 Reinforced cross-section in stadium II 

In stadium II the cross-section is assumed to be cracked and the influences from the 
concrete in tension is neglected (see Section 12.2.1.2). The stress distribution in the 
transformed cross-section is calculated by multiplying the concrete strain with the 
modulus of elasticity for concrete (see Equation (12.10)) why only the stresses in the 
concrete are shown in Figure 12.12. Underneath the neutral layer fictive concrete 
stresses are calculated and the steel stress is calculated from the fictive concrete stress 
at the steel level. 

 

Figure 12.12 Strain and stress distribution in cracked rectangular cross-section of 
reinforced concrete subjected to pure bending. 

The height x of the compressed concrete zone is calculated by using an equation of 
equilibrium. As mentioned in Section 12.2.1.1 the centre of gravity, calculated with 
respect to the stiffness, for the transformed cross-section coincides with the neutral 
layer meaning: 

CGxx =   (12.24)

The distance from the compressed edge to the centre of gravity for the transformed 
cross-section is calculated as (for a rectangular cross-section): 

II

ss

CG A

dAdAxbx
x

22)1(
2

αα +′′−+
=   (12.25)

Using Equations (12.14), (12.24) and (12.25) the equilibrium equation can be written 
as: 

( ) dAdAxbxAAbxx ssss αααα +′′−+=+′−+ )1(
2

)1(   (12.26)

1cε 1cσ  

2cσ  2cε

M  x  

z  
sε

ccA

sA  

Fictive concrete stress 

ασσ ssc z =)(

)()( zEz ccc εσ =
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Rearranging the terms in Equation (12.26) the equation from which x can be 
calculated is: 

( ) ( ) 0)1(
2

2

=−+′−′−+ dxAdxAbx
ss αα   (12.27)

or 

0)1(2)1(22 =




 +′′−−





 +′−+ dAdA

b
xAA

b
x ssss αααα   (12.28)

The moment of inertia in case of a cracked rectangular cross-section is calculated as: 

( ) ( )22
23

)1(
212

xdAdxAxxbxbxI ssCGII −+′−′−+





 −+= αα

  

(12.29
) 

Using Equation (12.24) together with Equation (12.29) gives the expression for the 
moment of inertia in stadium II for a rectangular cross-section. 

( ) ( )22
3

)1(
3

xdAdxAbxI ssII −+′−′−+= αα   (12.30)

The concrete stress at the steel level is: 

s
II

sc z
I
Mz =)(σ   (12.31)

Due to the assumption of full interaction between the steel and the concrete ant that 
yielding starts in the reinforcement the concrete stress at steel level can be calculated 
as:  

α
σ

σ sy
sc z =)(   (12.32)

The moment M can now be calculated by using Equations (12.31) and (12.32). 

s

IIsysy
s

II z
I

Mz
I
M

α
σ

α
σ

=⇔=   (12.33)

 

12.2.2  Calculations in stadium III 

In this chapter calculation models are shown for flexural failure due to pure bending 
of reinforced concrete beams with rectangular cross-section. Only a method with 
simplified stress block is shown. 
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12.2.2.1 Failure criteria 

In stadium III plastic behaviour of the materials are both possible and wanted. 
Yielding of the material gives a ductile behaviour and facilitates force redistribution 
in the structure. 

The failure is determined by the deformation capacity of the materials. In the Swedish 
calculation code BBK 04, Boverket (2004), the failure criteria are: 

For ordinary concrete (with characteristic compressive strength 60≤cckf  MPa): 

•  ultimate concrete strain is limited to 

3105.3 −⋅≤ccε   (12.34)

For cold-worked reinforcing steel: 

•  The strain is limited to 

01.0−≤ gs εε   (12.35)

 where εg is the limit strain. 

For hot-rolled reinforcing steel there is no limitation of the strain because the capacity 
of deformation is very high. 

 

12.2.2.2 Reinforced rectangular cross-section in stadium III 

For cross-section with flexural cracks and hot-rolled reinforcing steel subjected to 
pure bending the determining failure criteria is always limited by Equation (12.34), 
.i.e. This means that the concrete strain in the compressed edge εcc has reached the 
maximum value εcu. 

3105.3 −⋅== cucc εε   (12.36)

When the maximum value of the concrete strain in the compressed edge is reached the 
cross-section is about to fail and the cross-section has reached the ultimate limit for 
which the bearing capacity shall be calculated. 

The same cross-section used in Section 12.2.1.5 and 12.2.1.6 shall be studied but in 
stadium III. As in stadium II a compressive zone is formed but in here the stress 
distribution is no longer linear because of the yielding, see Figure 12.13. 
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Figure 12.13 Strain and stress distribution in cracked rectangular cross-section of 
reinforced concrete subjected to pure bending where the maximum 
value of the concrete strain in the compressed edge is reached 

In case of a simplified rectangular stress block the values of α and β are 0.8 and 0.4 
respectively. 

The assumption of linear strain distribution means that the steel strain is equal to the 
concrete strain at the reinforcement layer and the steel strain can be expressed as: 

cus x
xd εε −=   (12.37)

and as in stadium II the influence of the tensioned concrete is neglected. 

The compressive resultant Fc, placed at the distance βx=0.4x from the compressed 
edge, can be calculated as: 

xbfxbfF ccccc 8.0⋅⋅=⋅⋅= α   (12.38)

The internal lever arm is: 

xdxdz 4.0−=−= β   (12.39)

Equilibrium equations for the rectangular cross-section can be expressed as: 

sscc Axbf ⋅=⋅⋅ σ8.0  (12.40)

)4.0(8.0 xdxbfM ccpl −⋅⋅=  (12.41)

where plM  is the ultimate moment capacity. 
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12.2.2.3 Rotational capacity 

The yielding capacity in case of bending, called the rotational capacity, is the largest 
change of angle that a plastic hinge can undergo and still keep its maximum moment 
capacity. Calculations of the rotational capacity are here made by following Svensk 
byggtjänst (1990). 

According to Svensk byggtjänst (1990) the rotational capacity, expressed in radians, 
can be calculated as: 

310−⋅⋅⋅= CBAplθ  (12.42)

where the factors A, B and C depends on the reinforcement arrangement, the strain-
stress relation for reinforcing steel and the position of the plastic hinge respectively. 

The factor A (where A≥0.05 must be fulfilled) is calculated as: 

bal

s
svA

ω
ωωω 4.17.16.01 −′++=  (12.43)

where  

ctc

svsv
v fsb

fA
⋅⋅

⋅
=ω  (12.44)

svA  total area of the shear reinforcement 

svf  shear strength of reinforcing steel 

cb  width of the compressed block 

s  spacing of shear reinforcement in between the plastic hinge and 
where the moment is zero 

ctf  tensional strength of the concrete 

ccc

scs
s fdb

fA
⋅⋅

⋅′
=′ω  (12.45)

sA′  total area of the reinforcement in compressed block 

scf  compressive strength of reinforcing steel 

d  effective height 

ccf  compressive strength of the concrete 
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ccc

sts
s fdb

fA
⋅⋅

⋅
=ω  (12.46)

sA  total area of tensioned reinforcement 

stf  tensile strength of reinforcing steel 

sst
bal Ef+⋅

⋅= −

−

3

3

105.3
105.38.0ω  (12.47)

sE  modulus of elasticity for reinforcing steel 

However, there are some limitations for the expressions in Equations (12.44), (12.45) 
and (12.46).  

0.2≤vω  if cbs ⋅≤ 8.0  otherwise 0=vω  (12.48)

ss ωω ≤′  provided that )min(15 ss φ′⋅≤  otherwise 0=′sω  (12.49)

where sφ′  is the diameter of the reinforcement bars subjected to compression. 

bals ωω ≤  (12.50)

The factor B  is equal to 1.0 for hot rolled, not weldable, reinforcement bars and 0.8 
for hot rolled, weldable, reinforcement bars. For further information about the factor 
B  and its values see Svensk byggtjänst (1990). 

In field the value of factor C  is: 

dlC 07 ⋅=  (12.51)

and by supports the value is: 

dlC 010 ⋅=  (12.52)

where 0l  is the distance from the plastic hinge to the place where the moment is zero. 

The calculations of required rotational capacity are made by the principle that if the 
plastic hinges have to rotate in order to form the assumed failure mechanism. In each 
plastic hinge the moment is known (it is the yielding moment) and the structure is 
then statically determinable and the required rotation can be calculated. 

The mechanism for a fixed beam is shown in Figure 12.14 below where θsupport and 
θfield is the total rotations in the plastic hinges at the support and midpoint 
respectively. 
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Figure 12.14 Mechanism and rotations. 

Due to symmetry the total rotation at the supports is equal and the total rotation at the 
plastic hinge in the middle of the beam is twice the size of the support rotation. 

supportfield θθ 2=  (12.53)

where the total rotation at the supports in case of a fixed beam is: 

L
u

support
2=θ  (12.54)

The total rotation can be divided into a plastic and an elastic part as shown in  
Figure 12.15. 

supportplsupportelsupport ,, θθθ +=  (12.55)

fieldplfieldelfield ,, θθθ +=  (12.56)

 

Figure 12.15 Elastic and plastic rotations of fixed beam (compare with  
Figure 12.14). 

By means of elementary cases in Samuelsson, Wiberg (1999) the value of the elastic 
part of the rotation can be calculated. For a fixed beam subjected to a uniformly 
distributed load q the midpoint deflection, in case of static load and linear elastic 
behaviour, is: 

EI
qLuel 384

4

=  (12.57)

The maximum value of q for which Equation (12.57) is valid is calculated by use of 
the maximum elastic moment at the support, where yielding starts: 

fieldθ  

supportθ  

u  

supportpl ,θ  

supportel ,θ  

eluu −

elu
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2

2 12
12 L

M
qqLM el

el =⇒=  (12.58)

and Equation (12.58) can be written as: 

EI
LM

EI
LM

u elel
el 32384

12 22

==  (12.59)

The corresponding rotational capacity at the support can be calculated as: 

L
uel

supportel
2

, =θ  (12.60)

which is easily seen in Figure 12.15. 

Due to symmetry the elastic rotation capacity at the supports is equal and the elastic 
rotation capacity in the middle of the beam is twice the size of the support rotation. 

L
uel

supportelfieldel
4

2 ,, == θθ  (12.61)

The plastic support rotation can now be calculated as: 

EI
LM

L
u

L
u

L
u elel

supportelsupportsupportpl 16
222

,, −=−=−= θθθ  (12.62)

and the plastic filed rotation is: 

EI
LM

L
u

L
u

L
u elel

fieldelfieldfieldpl 8
444

,, −=−=−= θθθ  (12.63)

 

12.3  Requirements of structural parts and materials in 
shelters due to Swedish shelter regulations 

In order to fulfil demands on functionality and durability of a shelter some minimum 
requirements on design and material are presented in the Swedish shelter regulation 
where the shelter is assumed to be built of reinforced concrete. Here only a brief 
review of the requirements is done, for further information see Räddningsverket 
(2003). The characteristic values of the loads shall be used in the analyses and safety 
coefficients for accidental loads shall be used. 

Minimum requirements for thicknesses of structural elements in a shelter due to the 
Swedish shelter regulation are shown in Table 12.2. The values in Table 12.2 are valid 
for structures assumed to have no significant protection from other buildings and are 
based on thicknesses required to protection from splinter and radioactive radiation. 
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Table 12.2 Minimum thickness of structural members in shelters 

Structural part Minimum thickness [mm]

Roof 350 

Floor 200 

Wall (outer) 350 

 

The concrete used in the shelter shall have at least strength class C25/30 and the 
amount of reinforcement is limited to: 

%1.1%14.0 ≤≤ ρ    where    
db

As

⋅
=ρ  (12.64)

The reinforcement shall be placed in two perpendicular layers with maximum 
200 mm spacing between the parallel bars. No shortening of the reinforcement in 
fields is allowed and the maximum thickness of concrete cover is 50 mm. 
Reinforcement shall be placed both in tensile and compression zone. 

Due to the Swedish shelter regulations a shelters shall endure an impulse load caused 
by a bomb containing 125 kg of the explosive substance TNT (trotyl) exploding 
5 meters from the wall. This impulse load is assumed to, at the most, correspond to 
the equivalent static load q=50 kN/m2 which is applied as shown in Figure 12.16. 

 

Figure 12.16 Load application due to Swedish shelter regulation where q=50 kN/m2. 

The support moment Ms shall not be more than 50 per cent higher than the moment in 
the field Mf in order to get a ductile behaviour of the structure, i.e.: 

fs MM 5.1≤  (12.65)

 

q  q  

q  
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12.4  Example; minimum amount of reinforcement 

A wall in a shelter will be analysed. The design and geometry of the wall is chosen to 
fulfil the minimum requirements in Section 12.3. The measurements of the wall and 
the load applied are shown in Figure 12.17 below.  

 

Figure 12.17 Shelter wall subjected to a uniformly distributed load q . 

The wall in the shelter can be seen as a fixed beam with length 2.50 m subjected to a 
uniformly distributed load q as shown in Figure 12.18. Influences from the normal 
force in the wall, caused by the uniformly distributed load subjected to the shelter roof 
are neglected, giving calculations on the safe side. 

 

Figure 12.18 Idealization of shelter wall. 

Studying a 1.0 meter wide strip of the beam gives a cross-section as shown in Figure 
12.19. 

 

Figure 12.19 Cross-section of idealized beam in Figure 12.18. 

2.50 m 

q

m 35.0=h  

m0.1=b  

m30.0=d

sA  - area of reinforcement in tensile zone

sA′  - area of reinforcement in compression zone

0.350 m 

2.50 m 

0.200 m 

0.350 m q  

q  
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Concrete C25/30 and reinforcement bars B500B are used and calculations are made in 
order to get the load-displacement curve for the beam, shown in Appendix I.  

The stiffness K (see Figure 12.2) of the uncracked beam is: 

3332=K  MN/m (12.66)

The inclination of the load-displacement curve after the first crack has occurred, K' 
(see Figure 12.2) is: 

7.102=′K  MN/m (12.67)

The maximum value of the internal force Rm is: 

4.502==⋅= plplm PLqR  kN (12.68)

By means of empirical relations in Räddningsverket (2004) the corresponding impulse 
load to the equivalent static load q can be determined. Here q corresponds to an 
impulse load where the maximum value of the load P1 is approximately 5000 kN/m2 
and the impulse is about 2800 Ns/m2. If the load is assumed to be a triangular load (in 
time) as shown in Figure 12.20 the duration of the load can be calculated by means of 
Equation (12.69). 
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Figure 12.20 Triangular load (in time) 

The value of the maximum deflection of the beam subjected to a dynamic load is 
calculated by means of transforming the beam into an SDOF system as described in 
Chapter 7. The equivalent values of the load, internal force and the mass is for the 
studied beam: 

MM Me κ=  

RR Ke κ=  
(12.70)
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PP Pe κ=  

In case of trilinear material the differential equations in the different ranges are: 

In the elastic range 
eee PuKuM =+&&  (12.71)

In the elastoplastic range 
ecrecree PuuKuKuM =−′++ )(&&  (12.72)

In the plastic range 
emee PRuM =+&&  (12.73)

The transformation factors for linear elastic material is used in all ranges and 
Equations (12.71), (12.72) and (12.73) can now be written as: 

In the elastic range 
PKuuM el

P
el
K

el
M κκκ =+&&  (12.74)

In the elastoplastic range 
( ) PuuKKuuM el

Pcrcr
el
K

el
M κκκ =−′++ )(&&  (12.75)

In the plastic range 
PRuM el

Pm
el
K

el
M κκκ =+&&  (12.76)

The transformation factors for linear elastic material are listed in Table 6.1: 

The maximum displacement, umax, for the SDOF system, with equivalent quantities 
for mass, internal force and external load, is calculated by means of the central 
difference method (see Section 5.2) and by use of an in OCTAVE program, developed 
for this project, see Section 7.1.1. 

=maxu  31.1 mm (12.77)

If instead the transformation factors for ideal plastic material are used in Equations 
(12.74) to (12.76) the maximum displacement found by SDOF analysis is: 

=maxu  35.2 mm (12.78)

The maximum deflection when using transformation factors for linear elastic material 
in the SDOF analysis is smaller than the deflection achieved when using 
transformation factors for ideal plastic material in the analysis. This is expected since 
when using linear elastic values the mass becomes larger than when using the ideal 
plastic values since κM

el> κM
pl

,  meaning that less energy is consumed when starting up 
the system with ideal plastic values, see discussion in Section 8.1.  
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Available rotational capacity, in support and field respectively, for the beam is, see 
Appendix I: 

0092.0,, =supportpldθ  rad (12.79)

0155.0,, =fieldpldθ  rad (12.80)

The required rotational rotation capacity, in support and field respectively, for the 
beam is, see Appendix I: 

0235.0, =supportplθ  rad (12.81)

0470.0, =fieldplθ  rad (12.82)

The required rotational capacity is much higher than the available rotational capacity 
(compare Equations (12.79) and (12.80) with Equations (12.81) and (12.82)) meaning 
that the wall in the shelter, see Figure 12.18, subjected to the transient load, in Figure 
12.20, will not endure the load and will collapse.  

The equivalent load used in the Swedish shelter regulations, Räddningsverket (2003) 
is based on a load with long duration since this load is the one assumed to be most 
unfavourable. However, the results above indicate that this might not be true. On the 
other hand, the calculation method used when estimating the rotational capacities in 
Svensk byggtjänst (1990) might be to conservative. When the equivalent load used in 
the Swedish shelter regulations where determined the way of calculating the rotational 
capacity used in Svensk byggtjänst (1990) where not known, or at least not well-
known. 

Now also consider linear elastic and ideal plastic material behaviour. In the linear 
elastic case the stiffness K is assumed to be the same as the stiffness K for the trilinear 
material (see Equation (12.66)). For ideal plastic material the maximum value of the 
internal force Rm is the same as in case of trilinear material, see Equation (12.68). 

 

12.4.1  Linear elastic behaviour 

In case of linear elastic material the differential equation is: 

eee PRuM =+&&  (12.83)

For linear elastic material the internal force is: 

uKR ⋅=  (12.84)

where the stiffness K is assumed to be the same as in the trilinear case: 

3332=K  MN/m (12.85)
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Inserting Equations (12.70) and (12.84) into Equation (12.83) the differential equation 
is: 

PKuuM PKM κκκ =+&&  (12.86)

where the transformation factors for the linear elastic material (in Table 6.1) are used: 

533.0
533.0
406.0

=
=
=

K

P

M

κ
κ
κ

 (12.87)

The maximum displacement, umax, calculated by use of an OCTAVE program, 
developed for this project. 

=maxu  2.81 mm (12.88)

A very small deflection is achieved when having linear elastic material and the same 
elastic stiffness is used as in case of trilinear material.  

 

12.4.2  Ideal plastic behaviour 

In case of ideal plastic material the differential equation is: 

emee PRuM =+&&        when      mRtP ≥)(    or   0)( ≠tu  (12.89)

The maximum value of the internal force Rm is assumed to be the same as in case of 
trilinear material (see Equation (12.68)): 

4.502=mR  kN (12.90)

Inserting Equations (12.70) into Equation (12.89) the differential equation is: 

PRuM PKM κκκ =+&&  (12.91)

where the transformation factors for the ideal plastic material (in Table 6.1) are used: 

5.0
5.0
31

=
=
=

K

P

M

κ
κ
κ

 (12.92)

The maximum displacement, umax, for the SDOF system, calculated by use of an 
OCTAVE program, developed for this project is: 

=maxu  32.7 mm (12.93)
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The maximum value of the deflection for ideal plastic material, Equation (12.93), is 
lower than the maximum deflection achieved when using transformations factors for 
ideal plastic material in the analysis of trilinear material, Equation (12.82). This is 
expected since more energy is consumed initially in the ideal plastic material case.  

Of the same reason, it can be probable that the maximum deflection in case of ideal 
plastic material shall be larger than when using transformation factors for linear 
elastic material in the trilinear material case. However, this can not be guaranteed  
since the equivalent mass in case of ideal plastic material is larger than for trilinear 
material when transformation factors for linear elastic material is used. When 
comparing Equations (12.93) and (12.77) it is seen that the displacement for the 
trilinear material is smaller than for ideal plastic material.  

 

12.5  Example; not minimum amount of reinforcement 

The beam analysed in Chapter 7 had a chosen amount of reinforcement not equal to 
the minimum amount, as in the example above. Since the beam is the same as used in 
Chapter 7 there is no need to calculate the load-displacement relation again, instead 
the values are found in Appendix D. However, the rotational capacities where not 
calculated in Appendix D, these calculations are made in Appendix I. 

The maximum displacement, umax, for the SDOF system with trilinear material, when 
using transformation factors for linear elastic case, is: 

=maxu  18.3 mm (12.94)

If, instead, the transformation factors for the ideal plastic material is used the 
maximum deflection is: 

=maxu  22.4 mm (12.95)

Available rotational capacity, in support and field respectively, for the beam is, see 
Appendix I: 

0090.0,, =supportpldθ  rad (12.96)

0157.0,, =fieldpldθ  rad (12.97)

The required rotational rotation capacity, in support and field respectively, for the 
beam is, see Appendix I: 

0132.0, =supportplθ  rad (12.98)

0264.0, =fieldplθ  rad (12.99)

Also for this amount of reinforcement the available rotational capacity is smaller than 
the required rotational capacity.  
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In case of ideal plastic material the maximum deflection is: 

=maxu  18.1 mm (12.100)

The same comments as in Example above is applicationable here when comparing the 
maximum deflection for trilinear material with transformation factors for linear elastic 
and ideal plastic material, respectively. Also when comparing the maximum 
deflection when having ideal plastic material and transformation factors for the ideal 
plastic material in the analysis of the trilinear material the comments in example 
above are valid here. When comparing Equations (12.94) and (12.100) it is seen that 
the maximum displacement for ideal plastic material is smaller than the displacement 
for trilinear material with transformation factors for linear elastic material  which was 
not the case in the example above. 
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13  Conclusions and ideas of further investigations 
In this project simplified hand-calculation methods are compiled and discussed. For 
transient loads, for example loads caused by explosions, structures behave different 
from when subjected to static loads. Hence, the dynamic effects and the devastation 
they can cause is hard to take into account in the simplified hand-calculation methods. 
For example influences of higher modes and spread out yielding areas are not taken 
into account in the simplified calculation methods described in this thesis. Another 
thing, not taken to account in the hand-calculation methods, is that when a load with 
very short duration is applied to a beam large local deformations can occur in the 
application area before the rest of the beam is even aware of the load. This means that 
in order not to overlook any negative effects when designing with regard to 
explosions it is important that the real behaviour of the beam, or at least a good 
approximation of it, is known by the designer. 

In this report the methodology of transforming beams to SDOF systems are shown 
and transformation factors for some typical cases and material behaviours are derived. 
The method of transforming deformable bodies into SDOF systems is useful since it 
simplifies the analyses of deformable structures subjected to transient loads. When the 
SDOF method is applicationable equivalent static loads, tabled beam equations and 
damage tables/curves can be used in order to simplify the analyses even more. 
However, due to limited available time the limit for when a load can be assumed to be 
an impulse load is not dealth with in this thesis but is worth further investigation.  

The agreement between the response of beams calculated by use of SDOF systems 
and the real behaviour of the beam is investigated by comparing the results with 
results from FE analyses. When the FE models of the beams are made in order to 
imitate the assumed behaviour in the SDOF analyses the agreement between the 
results are good. However, this way of modelling can be questioned since the SDOF 
method must also agree with the real behaviour of the beams. When modelling the 
beams for a more realistic behaviour, where yielding can occur also in areas outside 
the points where plastic hinges are assumed to appear the agreement differs for 
different material behaviour. In case of linear elastic material the agreement is still 
accurate since there is no plasticity but in case of plastic effects the agreement is less 
pleasing; at least for beams subjected to concentrated loads. Hence the use of this 
method when analysing structures made of reinforced concrete shall be used with 
caution, at least before further, deeper and more carefully investigations are made. 

When the SDOF method is used to analyse a wall in a shelter, represented by a 
reinforced concrete beam, subjected to a load corresponding to the load that the 
shelter shall withstand due to the Swedish shelter regulations, it turns out that the 
beam can not withstand the load. This indicates that either the equivalent load given in 
the Swedish shelter regulations are too small or the calculation method for the 
rotational capacity according to Svensk byggtjänst (1990) is too conservative.  

However, even if the available rotational capacity is too small compared to the 
required rotational capacity this will probably not cause failure. The analyses used 
utilize simplifications and idealizations of the reality that result in capacities on the 
safe side. 
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APPENDIX A Transformation factors for linear 
elastic material 

The transformation factors for linear elastic material are derived in Sections 6.2.1, 
6.2.2 and 6.2.3.1: 
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In case of concentrated loads applied in the system point )(),(
0
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 and the 

transformation factor for the load Equation (A.2) can be written as: 
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The relation between the bending moment and the curvature u''(x) is, in case of linear 
elastic material: 

EI
xMxu )()( =′′  (A.5)

The transformation factor for the internal force in Equation (A.3) when the beam is 
subjected to a concentrated load can thus be written as: 
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1 0

2
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s
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∫
=

==κ  (A.6)

The transformation factor for the mass Equation (A.1) is not influenced by the load 
shape. 
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In case of a uniformly distributed load Ltqdxtxq
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factor for the load in Equation (A.2) can be written as: 
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By use of Equation (A.5) the transformation factor for the internal force in 
Equation (A.3) when the beam is subjected to a uniformly distributed load can be 
written as: 
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A.1 Case (1.1) 

For a simply supported beam subjected to a concentrated load, as in Figure A.1, the 
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is: 

2
0for43

48
)( 2

32 LxP
L
xx

EI
Lxu ≤<⋅








−=  (A.9)

where x  is a coordinate in longitudinal direction with start point at one end of the 
beam. 

 

Figure A.1 Simply supported beam subjected to a concentrated load. 

The deflection of the system point, located in the middle of the beam, is: 

EI
PLLxuus 48

)2(
3

===  (A.10)

By rearranging the terms in Equation (A.10) the expression for the load can be written 
as: 

su
L
EIP 3

48=  (A.11)

and the moment distribution along the beam can be expressed as: 
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2
0for

2
)( LxPxxM ≤<=  (A.12)

By means of Equation (A.1) and due to symmetry the transformation factor for the 
mass can be calculated as: 
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Concentrated load applied in the system point gives (see Equation (A.4)): 

0000.1=Pκ  (A.14)

By inserting Equations (A.10) to (A.12) into Equation (A.6) the transformation factor 
for the internal force is calculated. 
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Finally the values of MPκ  and MPκ  are calculated. 

4857.00000.14857.0 === PMMP κκκ  (A.16)

0000.10000.10000.1 === PKKP κκκ  (A.17)

 

A.2 Case (1.2) 

For a simply supported beam subjected to a uniformly distributed load, as in Figure 
A.2, the deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is: 
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where x  is a coordinate in longitudinal direction with start point at one end of the 
beam. 
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Figure A.2 Simply supported beam subjected to a uniformly distributed load. 

The deflection of the system point, located in the middle of the beam, is: 
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By rearranging the terms in Equation (A.19) the expression for the load can be written 
as: 
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and the moment distribution along the beam can be expressed as: 
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By means of Equation (A.1) the transformation factor for the mass can be calculated 
as: 
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Uniformly distributed load gives (see Equation (A.7)): 
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By inserting Equations (A.19) to (A.21) into Equation (A.8) the transformation factor 
for the internal force is calculated. 
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Finally the values of MPκ  and MPκ  are calculated. 

7873.06400.05039.0 === PMMP κκκ  (A.25)

0000.16400.06400.0 === PKKP κκκ  (A.26)

 

A.3 Case (2.1) 

For a fixed beam subjected to a concentrated load, as in Figure A.3, the deflection 
along the beam (tabled in Samuelsson and Wiberg (1999)) is: 
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where x  is a coordinate in longitudinal direction with start point at one end of the 
beam. 

 

Figure A.3 Fixed beam subjected to a concentrated load. 

The deflection of the system point, located in the middle of the beam, is: 
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By rearranging the terms in Equation (A.28) the expression for the load can be written 
as: 
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L

EIP 3
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and the moment distribution along the beam can be expressed as: 
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By means of Equation (A.1) and due to symmetry the transformation factor for the 
mass can be calculated as: 
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Concentrated load applied in the system point gives (see Equation (A.4)): 

0000.1=Pκ  (A.32)

By inserting Equations (A.28) to (A.30) into Equation (A.6) the transformation factor 
for the internal force is calculated. 
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Finally the values of MPκ  and MPκ  are calculated. 

3714.00000.13714.0 === PMMP κκκ  (A.34)

0000.10000.10000.1 === PKKP κκκ  (A.35)

 

A.4 Case (2.2) 

For a simply supported beam subjected to a uniformly distributed load, as in Figure 
A.4, the deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is: 
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where x  is a coordinate in longitudinal direction with start point at one end of the 
beam. 
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Figure A.4 Fixed beam subjected to a uniformly distributed load. 

The deflection of the system point, located in the middle of the beam, is: 
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By rearranging the terms in Equation (A.37) the expression for the load can be written 
as: 

su
L

EILq 3

384=⋅  (A.38)

and the moment distribution along the beam can be expressed as: 
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By means of Equation (A.1) the transformation factor for the mass can be calculated 
as: 
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(A.40)

Uniformly distributed load gives (see Equation (A.7)): 
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 (A.41)

By inserting Equations (A.37) to (A.39) into Equation (A.8) the transformation factor 
for the internal force is calculated. 
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Finally the values of MPκ  and MPκ  are calculated. 

7619.05333.04063.0 === PMMP κκκ  (A.43)

0000.15333.05333.0 === PKKP κκκ  (A.44)

 

A.5 Case (3.1) 

For a cantilever beam subjected to a concentrated load, as in Figure A.5, the 
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is: 
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L
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 (A.45)

where x  is a coordinate in longitudinal direction with start point at the support. 

 

Figure A.5 Cantilever beam subjected to a concentrated load. 

The deflection of the system point, located in the free end of the beam, is: 
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PLLxuus 3
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3

===  (A.46)

By rearranging the terms in Equation (A.46) the expression for the load can be written 
as: 

su
L
EIP 3

3=  (A.47)

and the moment distribution along the beam can be expressed as: 
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PLPxxM −=)(  (A.48)

By means of Equation (A.1) the transformation factor for the mass can be calculated 
as: 
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 (A.49)

Concentrated load applied in the system point gives (see Equation (A.4)): 

0000.1=Pκ  (A.50)

By inserting Equations (A.46) to (A.48) into Equation (A.6) the transformation factor 
for the internal force is calculated. 
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Finally the values of MPκ  and MPκ  are calculated. 

2357.00000.12357.0 === PMMP κκκ  (A.52)

0000.10000.10000.1 === PKKP κκκ  (A.53)

 

A.6 Case (3.2) 

For a cantilever beam subjected to a uniformly distributed load, as in Figure A.6, the 
deflection along the beam (tabled in Samuelsson and Wiberg (1999)) is: 
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where x  is a coordinate in longitudinal direction with start point at the support. 
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Figure A.6 Cantilever beam subjected to a uniformly distributed load. 

The deflection of the system point, located in the free end of the beam, is: 
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By rearranging the terms in Equation (A.37) the expression for the load can be written 
as: 
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L
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8=⋅  (A.56)

and the moment distribution along the beam can be expressed as: 

2
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By means of Equation (A.1) the transformation factor for the mass can be calculated 
as: 
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(A.58)

Uniformly distributed load gives (see Equation (A.7)): 
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 (A.59)

By inserting Equations (A.55) to (A.57) into Equation (A.8) the transformation factor 
for the internal force is calculated. 
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 (A.60)

Finally the values of MPκ  and MPκ  are calculated. 

6420.04000.02568.0 === PMMP κκκ  (A.61)

0000.14000.04000.0 === PKKP κκκ  (A.62)
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APPENDIX B Transformation factors for ideal 
plastic material 

The transformation factors for ideal plastic material are derived in Sections 6.2.1, 
6.2.2 and 6.2.3.2: 
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B.1 Case (1.1) and (1.2) 

For a simply supported beam one plastic hinge will develop in the middle of the beam 
(the system point) if the load is symmetrical. The mechanisms in case of a 
concentrated and uniformly distributed load respectively can be seen in Figure B.1. 

 

Figure B.1 Simply supported beam subjected to a) concentrated load b) uniformly 
distributed load.  

The deflection )(xu along the beam can be expressed as: 

2for2)( Lxx
L

uxu s <=   (B.4)

a) L
us4  

L
us2  

qP

L
us4

L
us2

b) 
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where su  is the displacement of the system point, x  is a coordinate in longitudinal 
direction of the beam with start point at one end of the beam and L is the length of the 
beam. 

The first derivative of )(xu  is: 

L
uxu s

2)( =′  2for Lx <  (B.5)

Equation (B.1) gives the expression of the transformation factor for the mass: 
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By means of Equation (B.4) this expression can be rewritten as: 
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The value of the transformation factor for mass is the same for both case (1.1) and 
(1.2) in case of ideal plastic material.  

The transformation factor for the load is (see Equation (B.2)): 
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In case of concentrated load acting in the system point Equation (B.8) can be written 
as: 
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since Pdxtxq
Lx

x

=∫
=

=0

),(  and 0),( =txq  when 2Lx ≠  

By means of Equation (B.4) the expression for transformation factor in Equation (B.8) 
in case of a uniformly distributed load can be written as: 
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The expression for the transformation factor for the internal resisting force, when 
having an ideal plastic material is (see Equation (B.3)): 
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The curvature )(xu ′′  is zero everywhere in the beam except in the system point 
(which is located in the middle of the beam) where the moment has a known constant 
value, Equation (B.11) can be written as: 
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The integral of the curvature in the system point is one way to express the change of 
the angle in this point. Due to symmetry the change of angle in the system point is 
twice the change of angle over the supports. 
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The maximum internal resistance mR  is equal to the external load needed to create the 
mechanism, plP , (or Lqpl ⋅  for uniformly distributed load) (see  

Figure B.1). The moment in the system point is equal to the plastic moment, plM . 

 

B.1.1 Case (1.1) 

For a simply supported beam subjected to a concentrated load (see  

Figure B.1.a) the plastic moment is: 

4
LP

M pl
pl =  (B.14)

Equation (B.9) gives the transformation factor for the load for case (1.1). 

0000.1=Pκ  (B.15)
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Equations (B.13) and (B.14) inserted into Equation (B.12) gives the transformation 
factor for the internal resisting force for case (1.1). 
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B.1.2 Case (1.2) 

For a simply supported beam subjected to a uniformly distributed load (see  

Figure B.1.b) the plastic moment is: 
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Equation (B.10) gives the transformation factor for the load for case (1.2). 
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Equation (B.13) and (B.17) inserted in Equation (B.12) gives the transformation 
factor for the internal resisting force for case (1.2). 
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B.2 Case (2.1) and (2.2) 

For a beam fixed at both ends there will be one plastic hinge in the middle of the 
beam (the system point) and one hinge at each support if the load is symmetrical. The 
mechanism can be seen in Figure B.2. 
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Figure B.2 Fixed beam subjected to a) concentrated load b) uniformly distributed 
load. 

The deflection )(xu along the beam can be expressed as: 

2for2)( Lxx
L

uxu s <=   (B.20) 

where su  is the displacement of the system point, x  is a coordinate in longitudinal 
direction of the beam with start point at one end of the beam and L is the length of the 
beam. 

And the first derivative of )(xu  is: 

L
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2)( =′  (B.21)

Since the mechanisms in case (2.1) and (2.2) are the same as in case (1.1) and (1.2) 
respectively the transformation factors for the mass and the load calculated in 
Appendix B.1 can be used. The transformation factor for the mass is than: 
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The value of the transformation factor for mass is the same for both case (2.1) and 
(2.2). The transformation factor of the load depends on the shape of the load and 
differs in case (2.1) and (2.2). 

The expression for the transformation factor for the internal resisting load when 
having an ideal plastic material is (see Equation (6.42)). 
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The curvature )(xu ′′  is zero everywhere in the beam except in the hinges where the 
moment has a known constant value. Equation (B.23) can be written as: 
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The integral of the curvature in the hinges is one way to express the change of the 
angle in these points. Due to symmetry the change of angle in the system point is 
twice the change of angle over the supports. 
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The maximum internal resistance mR  is equal to the external load needed to create the 
mechanism, plP , (or Lq pl ⋅  for uniformly distributed load) (see Figure B.2). The 
moment in the system point is equal to the plastic moment, plM . 

 

B.2.1 Case (2.1) 

For a beam subjected to a concentrated load (see Figure B.2.a) the plastic moment is: 

8
LP

M pl
pl =  (B.26)

The transformation factor for the load is the same as in case (1.1). 

0000.1=Pκ  (B.27)

Equation (B.25) and (B.26) inserted in Equation (B.23) gives the transformation 
factor for the internal resisting force for case (2.1). 
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B.2.2 Case (2.2) 

For a beam subjected to a uniformly distributed load (see Figure B.2.b) the plastic 
moment is: 

16

2Lq
M pl

pl =  (B.29) 

The transformation factor for the load is the same as in case (1.2). 

2
1=Pκ  (B.30)

Equation (B.25) and (B.29) inserted in Equation (B.23) gives the transformation 
factor for the internal resisting force for case (2.2). 
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B.3 Case (3.1) and (3.2) 

For a cantilever beam there will be one plastic hinge at the support. The mechanism 
can be seen in  

Figure B.3. 

 

Figure B.3 Cantilever beam subjected to a) concentrated load b) uniformly 
distributed load. 

The deflection )(xu along the beam can be expressed as: 

x
L
u

xu s=)(
  

(B.32) 

where su  is the displacement of the system point, x  is a coordinate in longitudinal 
direction of the beam with start point at one end of the beam and L is the length of the 
beam. 
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And the first derivative of )(xu  is: 

L
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Equation (6.18) gives the expression of the transformation factor for the mass: 
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By means of Equation (B.32) this expression can be rewritten as: 
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The value of the transformation factor for mass is the same for both case (3.1) and 
(3.2).  

The transformation factor for the load is (see Equation (6.22)): 
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In case of concentrated load acting in the system point Equation (B.36) can be written 
as: 
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since Pdxtxq
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By means of Equation (B.32) the expression for transformation factor in Equation 
(B.36) in case of a uniformly distributed load can be written as: 

∫

∫
=

=

=

== Lx

x

Lx

x
P

dxtxq

dxtxq
L
x

0

0

),(

),(
κ  (B.38)
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The expression for the transformation factor for the internal resisting load when 
having an ideal plastic material is (see Equation (6.42)): 

∫
=

=

′′=
Lx

xsm
K dxxuM

uR 0

)(1κ
 

(B.39)

The curvature )(xu ′′  is zero everywhere in the beam except in the plastic hinge where 
the moment has a known constant value. Equation (B.39) can be written as: 

∫∫
+

−

+

−

′′=′′=
0

0

0

0

)()(1 dxxu
uR

M
dxxuM

uR sm

pl

sm
Kκ

 
(B.40)

The integral of the curvature in the hinges is one way to express the change of the 
angle in this point.  

L
u

udxxu s=′=′′∫
+

−

)0()(
0

0

 (B.41)

The maximum internal resistance mR  is equal to the external load needed to create the 
mechanism, plP , (or Lq pl ⋅  for uniformly distributed load) (see  

Figure B.3). The moment in the system point is equal to the plastic moment, plM . 

 

B.3.1 Case (3.1) 

For a cantilever beam subjected to a concentrated load (see  

Figure B.3.a) the plastic moment is: 

LPM plpl =  (B.42)

Equation (B.37) gives the transformation factor for the internal resisting force for case 
(3.1). 

0000.1=Pκ  (B.43) 

Equation (B.42) and (B.44) inserted in Equation (B.40) gives the transformation 
factor for the internal resisting force for case (3.1). 

0000.1)(
0

0

===′′= ∫
+

− pl

pls

sm

pl

sm

pl
K P

P
L
u

uR
LP

dxxu
uR

M
κ  (B.44)
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B.3.2 Case (3.2) 

For a beam subjected to a concentrated load (see  

Figure B.3.b) the plastic moment is: 

2

2Lq
M pl

pl =  (B.45)

Equation (B.38) gives the transformation factor for the internal resisting force for case 
(3.2). 

2
11

),(

),(

0

0

0 === ∫
∫

∫ =

=
=

=

=

=
Lx

x
Lx

x

Lx

x
P qdx

L
x

qL
dxtxq

dxtxq
L
x

κ  (B.46)

Equation (B.42) and (B.45) inserted in Equation (B.40) gives the transformation 
factor for the internal resisting force for case (4.2.5). 

2
1

2
11

2
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===′′= ∫
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− Lq
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Kκ  (B.47)
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APPENDIX C Comparison with transformation 
factor according to Granström and 
Balazs 

Granström (1958) and Balazs (1997) have used a different definition of the 
transformation factor for the internal resisting load than used in this report. The 
definition for the ideal plastic case according to Granström and Balazs (here called 

BG
K

/κ ) is: 

∫
=

=

′′=
1

0 *

/ )()(
8
1 ζ

ζ

ζζηζκ d
M

MBG
K  (C.1)

where Lx=ζ  relation between coordinate x  and the length of the beam 

 )(ζM  moment 

su
u )()( ζζη =  relation between deflection and the deflection of the system 

point 

 *M  moment in section of comparison (often coinciding with the 
system point) 

In order to make it possible to compare the two different expressions for the 
transformation factor the expression of Kκ  in ideal plastic case (see Equation (6.42)) 
can be rewritten as: 

∫

∫∫
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
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xsm
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 (C.2)

The relation between BG
K

/κ  and Kκ  is then: 

*
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/

8
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ζζηζ

ζζηζ

κ
κ  (C.3)

Equation (C.3) can be rewritten as: 
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m

BG
KK LR

M */ 8
⋅= κκ  (C.4)

The equation of motion used in this report, for a SDOF system with ideal plastic 
material, is: 

)(tPRuM PmKsM κκκ =+&&  (C.5)

The differential equation according to Granström (1958) and Balazs (1997) can by use 
of Equations (C.4) and (C.5) be written as : 

)(8 */ tP
L
MuM P

BG
KsM κκκ =⋅+&&  (C.6)
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APPENDIX D Input data in analyses 
The cross-section of the reinforced concrete beam, shown in Figure D.1, is chose in 
order to fulfil minimum requirements in the Swedish shelter regulation described in 
Section 12.3. 

 

Figure D.1 Cross-section of reinforced concrete beam. 

Equation (9.1) gives the limitations of the amount of reinforcement and for this beam 
the amount of reinforcement close to %30.0=ρ  are wanted. For this amount the total 
area of reinforcement sA  is: 

2mm 900=⋅⋅= dbAs ρ  (D.1)

In order to have even values 20016 sφ  is used (meaning reinforcement bars of 
diameter 16 mm with spacing 200 mm) the total area of reinforcement per meter is: 

mmm 1005 2=sA  (D.2)

and by use of Equation (9.1) the amount of reinforcement is calculated. 

%)1.1%335.0%14.0(%335.0 <<=
⋅

=
db

Asρ  (D.3)

The beam is double reinforced (meaning that reinforcement bars are placed both in 
tensile and compression zone). The area of the tensile steel is chosen to be the same as 
for the compressed steel. 

mmm 1005 2=′sA  (D.4)

The support moment is assumed to be equal to the maximum field moment. 

fs MM =  (D.5)

The characteristic values of the material properties of interest for concrete C25/30 and 
reinforcement steel B500B are shown in Table 7.1 and Table D.2 respectively. 

m 35.0=h  

m0.1=b  

m30.0=d

sA  - area of reinforcement in tensile zone

sA′  - area of reinforcement in compression zone
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Table D.1 Material properties for concrete quality C25/30 

 

 

Table D.2 Material properties for reinforcement quality B500B 

 

 

D.1 Moment capacities for the different stadiums 

In order to get the material response curve (load-deflection curve) the values of the 
load when the material cracks crP , when the reinforcement starts to yield plP  and the 
ultimate load uP  must be calculated. In case of uniformly distributed load 

LqP crcr ⋅= , LqP plpl ⋅=  and LqP uu ⋅= . Due to the Swedish shelter regulations all 
calculations are preformed in ultimate limit state. 

In Section 12.2.2 the relation between the design and characteristic values of the 
material properties in ultimate limit state for concrete and steel are presented as: 

nm

k
d

f
f

γηγ
=   (D.6) 

nm

k
d

E
E

γηγ
=   (D.7) 

ykst ff 9.0=   (D.8) 

where the values of the safety factors (here meaning mγη ⋅ and nγ ) are 1.0 in all cases 
except when calculating the design value of the strength parameters for concrete, then 

ηγm  equals 1.2. The compression strength and the modulus of elasticity of the 

C25/30 

Compressive strength, cckf  24 MPa

Tensile strength, ctkf  1.7 MPa

Modulus of elasticity, ckE  31 GPa

B500B 

Yielding stress, ykf  500 MPa

Modulus of elasticity, skE  200 GPa
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concrete are multiplied with a factor 1.1 and 1.2 respectively in case of accidental and 
dynamic load. 

ccd
accidental

ccd ff 1.1=   (D.9) 

nm

ckdynamic
cd

E
E

γηγ
⋅

=
2.1

  (D.10)

 

•  Concrete C25/30: 

22
2.1

241.1
2.1

1.1 =





=






= cck

ccd
f

f  MPa 

417.1
2.1

== ctk
ctd

f
f  MPa 

2.372.1 == ckcd EE  GPa 

•  Reinforcing steel B500B: 

4505009.09.0 =⋅=⋅= ykst ff  MPa 

200== sksd EE  GPa 

The factor α  is defined in Equation (12.13) and is in this case: 38.5
2.37

200 ==α  

 

D.1.1 Stadium I 

Due to the crack criteria in Section 12.2.1.4 the beam remains uncracked as long as 
the maximum value of the tensile stress in the most exposed cross-section fulfils 

ζ
σ cbt

ct
f

<   (D.11)

meaning that the cross-section cracks when: 

ζ
σ cbt

ct
f

=max,   (D.12)

where ζ  is 1.0 and the flexural strength is calculated as: 

ctcbt fkf ⋅=  (D.13)
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4

4.06.0
h

k +=      and     45.10.1 ≤≤ k  

Applied on this example the value of the flexural strength is: 

12.1
35.0
4.06.0

4
=+=k  

59.1417.112.1 =⋅=cbtf MPa 
(D.14)

By use of Equation (D.12) the value of the tensile stress when the cross-section cracks 
can be calculated. 

59.1
0.1
59.1

max, ===
ζ

σ cbt
ct

f
 MPa (D.15)

The equivalent area for a cross-section in stadium I is calculated as in 
Equation (12.12) and for a rectangular cross-section with reinforcement in the 
compressed zone the equation can be written and calculated as: 

( ) ( ) =⋅⋅−+⋅⋅−+=

=−+′−+⋅=
−− 66 101005138.5101005138.535.0

)1()1( ssI AAhbA αα
 

=0.359 m2 

(D.16)

The distance to the centre of gravity, measured from the most compressed edge of the 
cross-section is, due to symmetry: 

175.0
2
35.0

2
=== hxCG  m (D.17)

The moment of inertia for the rectangular cross-section is calculated by means of 
Equation (12.23). 

( ) ( ) =−−+′−−+= 22
3

)1()1(
12 CGsCGsI xdAdxAbhI αα  

( ) ( )

( ) ( ) =−⋅⋅−

+−⋅⋅−+=

−

−

26

26
3

175.03.0101005138.5

05.0175.0101005138.5
12
35.0

 

31071.3 −⋅=  m4 

(D.18)

By rearranging the terms in Equation (12.22) and using the concrete stress in the 
tensioned edge for which the cross-section cracks max,ctσ  (see Equation (D.15)) the 
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moment for which the cross-section cracks crM  can be calculated. The distance z  
from the neutral layer to the tensioned edge is CGxhz −= . 

=
−

⋅⋅⋅=
⋅

=
−

175.035.0
1071.31059.1 36

max,

z
I

M Ict
cr

σ
 

64.33=  kNm 

(D.19)

The load for which the cross-section cracks can now easily be calculated, however, 
the expressions depend on boundary conditions and type of load. 

 

D.1.2 Stadium II 

Once the beam has cracked the calculations is made in stadium II as long as no 
yielding take place in the material. 

 

Figure D.2 Strain and stress distribution in cracked rectangular cross-section of 
reinforced concrete subjected to pure bending. 

For cross-section subjected to pure bending the neutral layer coincides with the centre 
of gravity of the equivalent cross-section. 

CGxx =   (D.20)

By use of Equation (12.28) the distance from the most compressed edge to the neutral 
layer is calculated. 

M  
x  

z

ccA
ccσ

Fictive concrete stress
α
σσ s

sc z =)(  

ccε  

sε

sε ′
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( )( ) ( )( )12122 ⋅+′⋅′−−+′−+ dAdA
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xAA
b

x ssss αααα

⇒  
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( ) ( )( )
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( )

( )( )
m0517.0

3.038.505.0138.5
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1010052

0.1
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(D.21) 

The equivalent area of the cracked cross-section is calculated by means of 
Equation (12.14). 

( ) ( ) =+′−+⋅=+′−+= ssssccII AAxbAAAA αααα 11   

( )
26

6

m0615.010100538.5
101005138.50517.00.1

=⋅⋅
+⋅⋅−+⋅=

−

−
 

(D.22)

By use of Equation (12.29) the moment of inertia for the cracked cross-section is 
calculated. 

( ) ( ) ( ) =−+′−′−+= 22
3

1
3

xdAdxAbxI ssII αα  

( ) ( )

( ) =−⋅⋅

+−⋅⋅−+=

−

−

26

26
3

0517.03.010100538.5

05.00517.0101005138.5
3

0517.0
 

41079.3 −⋅=  m4 

(D.23)

It is assumed that the steel will start to yield before concrete does (always assumed 
even though it might not be true). When the yielding starts in the reinforcement bars 
the stress in the steel is equal to the yield stress. 

sts f=σ   (D.24)

the concrete is correct. 
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By use of Equation (12.31) the fictive concrete stress at the steel level, )( sc zσ , when 
the reinforcement starts to yield can be calculated. 

7.83
38.5
10450)(

6

=⋅===
αα

σ
σ stsy

sc
f

z  MPa (D.25)

By rearranging the terms in Equation (12.19) and using the concrete stress at the steel 
level when the steel starts to yield (see Equation (D.25)) the moment for which the 
yielding starts splM  can be calculated. The distance sz  from the neutral layer to the 
steel level is CGs xdz −= . 

=
−

⋅⋅⋅=
⋅

=
−

0517.03.0
1079.3107.83)( 46

s

IIsc
spl z

Iz
M

σ
 

8.127=  kNm 

(D.26)

The load for which the steel starts to yield can now easily be calculated, however, the 
expressions depend on boundary conditions and type of load. For a beam subjected to 

 

D.1.3  Stadium III 

The stress and strain distributions, when using simplified stress block, in the cross-
section for stadium III are shown in Figure D.3 where α  and β  are 0.8 and 0.4 
respectively. 

 

Figure D.3 Strain and stress distribution in cracked rectangular cross-section of 
reinforced concrete subjected to pure bending and where the maximum 
value of the concrete strain in the compressed edge is reached. (When 
using simplified stress block). 

The tensile steel is assumed to have a plastic behaviour when the ultimate state is 
reached meaning that the strain in the steel sε  is higher than the value of the strain 
when yielding starts syε : 

sys εε ≥   (D.27)

cF

M  
x  

z

ccA
ccf⋅αcuε  

sε sF  

ccf⋅β  

sε ′

sF ′
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As soon as the value of the strain when yielding starts syε  is reached in the 
reinforcement bars the stress in the bars sσ  is equal to the yield stress stf : 

sts f=σ   (D.28)

By means of Hook’s law the force sF  in the steel is calculated as: 

25.45210100510450 66 =⋅⋅⋅=⋅= −
ssts AfF  kN (D.29)

The reinforcement in the compressed zone is assumed not to yield and has therefore 
elastic behaviour. 

sss E εσ ′⋅=′   (D.30)

Where the strain in the compressed steel sε ′  is calculated in the same way as sε  in 
Equation (12.32). The ultimate concrete strain cuε  is reached in the compressed edge. 

( )
cus x

dx εε ′−=′   (D.31)

By means of Hook’s law the force sF ′  in the steel is calculated as: 

( )

( )

kN175.355.703

101005105.305.010200 639

x

x
x

A
x

dxEAEAF scusssssss

−=

=⋅⋅⋅−⋅=

=′⋅
′−⋅=′⋅′⋅=′⋅′=′

−−

εεσ

 (D.32)

The resulting force in the compressed concrete is calculated by use of Equation 
(12.38). 

xxxbfF ccc ⋅=⋅⋅⋅=⋅⋅⋅= 176008.00.11022 6α  kN (D.33)

Horizontal equilibrium conditions gives: 

ssc FFF =′+  

( )

m0381.0
17600

175.35
176002

25.251
176002

25.251

0175.3525.4525.70317600

25.452175.355.70317600

2

2

=+







⋅
+

⋅
−=

=−−+

=−+

x

xx
x

x

 
(D.34)
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Now control that the assumptions made in Equations (D.28) and (D.30) are correct. 

The ultimate strain of concrete is 3105.3 −⋅=cuε  and the steel strains are calculated by 
use of Equation (12.37). 

0.24105.3
0381.0

0381.03.0 3 =⋅⋅−=−= −
cus x

xd εε ‰ (D.35)

09.1105.3
0381.0

05.00381.0 3 −=⋅⋅−=
′−=′ −

cus x
dx εε ‰ (D.36)

The yield strain in the steel is: 

25.2
10200
10450

9

6

=
⋅
⋅===

s

st

s

y
sy E

f
E
σ

ε ‰ (D.37)

and it is seen that the assumptions made are correct. 

By means of a moment equation about x , as in Equation (12.41), gives the value of 
the ultimate moment capacity of the beam. 

( ) =′−⋅⋅′+−⋅⋅= ddAExdxbfM sssccpl ε)4.0(8.0

( )
( ) =−⋅⋅⋅⋅⋅−

+⋅−⋅⋅⋅⋅⋅=
−− )05.03.0(101005102001009.1

0381.04.03.00381.00.110228.0
693

6

4.136=  kNm 

(D.38) 

 

D.2 Load-displacement relations 

D.2.1 Case(1.1) 

In stadium I and II a reinforced concrete beam behaves elastically and the maximum 
moment appears, in this case, in the middle of the beam and is calculated as: 

L
MPPLM 4

4
=⇔=  (D.39)

The load for which the first crack occurs is then: 

8.53
5.2

64.3344
=⋅==

L
M

P cr
cr  kN (D.40)

The reinforcement in the tensile zone starts to yield when the load is: 

5.204
5.2

8.12744
=⋅==

L
M

P spl
spl  kN (D.41)
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When having elastic response the stiffness K  can be calculated as: 

3

48
L
EIK =  (D.42)

In stadium I the stiffness is: 

0.424
5.2

1071.3102.374848
3

39

3 =⋅⋅⋅⋅==
−

L
IE

K Ic
I  MN/m (D.43)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is: 

3.43
5.2

1079.3102.374848
3

49

3 =⋅⋅⋅⋅==
−

L
IE

K IIc
II  MN/m (D.44)

The values of the midpoint deflection corresponding to crP  and plP  is calculated as: 

K
Pu =  (D.45)

The midpoint deflection is than for load crP : 

127.0
100.424

108.53
6

3

=
⋅
⋅==

I

cr
cr K

P
u  mm (D.46)

and the midpoint deflection for load plP  is: 

72.4
103.43
105.204

6

3

=
⋅
⋅==

II

spl
spl K

P
u  mm (D.47)

The inclination of the load-displacement curve in between the occurrence of the first 
crack and the ultimate state is calculated as: 

( )
( ) 8.32

10127.072.4
108.535.204

3

3

=
⋅−
⋅−=

−
−

=′
−

crspl

crspl

uu
PP

K  MN/m (D.48)

In stadium III, the ultimate state, the beam is a mechanism and for a simply supported 
beam a plastic hinge is formed in the middle of the beam. The ultimate force is 
calculated as: 

2.218
5.2

4.13644
=⋅==

L
M

P pl
pl  kN (D.49)

The relation between the load and displacement is shown graphically in Figure D.4. 
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Figure D.4 Relation between load and displacement for case(1.1). 

 

D.2.2 Case(1.2) 

In stadium I and II a reinforced concrete beam behaves elastically and the maximum 
moment appears, in this case, in the middle of the beam and is calculated as: 

L
MPPLqLM 8

88

2

=⇔==  (D.50)

The load for which the first crack occurs is then: 

7.107
5.2
64.3388

=⋅==
L

M
P cr

cr  kN (D.51)

The reinforcement in the tensile zone starts to yield when the load is: 

0.409
5.2

8.12788
=⋅==

L
M

P spl
spl  kN (D.52)

When having elastic response the stiffness K  can be calculated as: 

35
384

L
EIK =  (D.53)

In stadium I the stiffness is: 

4.678
5.25

1071.3102.37384
5

384
3

39

3 =
⋅

⋅⋅⋅⋅==
−

L
IE

K Ic
I  MN/m (D.54)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is: 

Plastic hinge

1

2

31 

2 

3 
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3.69
5.25

1079.3102.37384
5

384
3

49

3 =
⋅

⋅⋅⋅⋅==
−

L
IE

K IIc
II  MN/m (D.55)

The values of the midpoint deflection corresponding to crP  and plP  is calculated as: 

K
Pu =  (D.56)

The midpoint deflection is than for load crP : 

159.0
104.678
107.107

6

3

=
⋅
⋅==

I

cr
cr K

P
u  mm (D.57)

and the midpoint deflection for load splP  is: 

90.5
103.69
100.409

6

3

=
⋅
⋅==

II

spl
spl K

P
u  mm (D.58)

The inclination of the load-displacement curve in between the occurrence of the first 
crack and the ultimate state is calculated as: 

( )
( ) 5.52

10159.090.5
107.1070.409

3

3

=
⋅−
⋅−=

−
−

=′
−

crspl

crspl

uu
PP

K  MN/m (D.59)

In stadium III, the ultimate state, the beam is a mechanism and for a simply supported 
beam a plastic hinge is formed in the middle of the beam. The ultimate force is 
calculated as: 

4.436
5.2

4.13688
=⋅==

L
M

P pl
pl  kN (D.60)

The relation between the load and displacement is shown graphically in Figure D.5. 
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Figure D.5 Relation between load and displacement for case(1.2). 

 

D.2.3 Case(2.1) 

In stadium I and II a reinforced concrete beam behaves elastically and the maximum 
moment appears, in this case, at the supports and in the middle of the beam at the 
same time and is calculated as: 

L
MPPLM 8

8
=⇔=  (D.61)

The load for which the first crack occurs is then: 

7.107
5.2
64.3388

=⋅==
L

M
P cr

cr  kN (D.62)

The reinforcement in the tensile zone starts to yield when the load is: 

0.409
5.2

8.12788
=⋅==

L
M

P spl
spl  kN (D.63)

When having elastic response the stiffness K  can be calculated as (Samuelsson, 
Wiberg (1999): 

3

192
L

EIK =  (D.64)

In stadium I the stiffness is: 

Plastic hinge

1

2

31 

2 
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1.1696
5.2

1071.3102.37192192
3

39

3 =⋅⋅⋅⋅==
−

L
IE

K Ic
I  MN/m (D.65)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is: 

3.173
5.2

1079.3102.37192192
3

49

3 =⋅⋅⋅⋅==
−

L
IE

K IIc
II  

MN/m 
(D.66)

The values of the midpoint deflection corresponding to crP  and plP  is calculated as: 

K
Pu =  (D.67)

The midpoint deflection is than for load crP : 

0635.0
101.1696
107.107

6

3

=
⋅
⋅==

I

cr
cr K

P
u  mm (D.68)

and the midpoint deflection for load splP  is: 

36.2
103.173
100.409

6

3

=
⋅
⋅==

II

spl
spl K

P
u  mm (D.69)

The inclination of the load-displacement curve in between the occurrence of the first 
crack and the ultimate state is calculated as: 

( )
( ) 2.131

100635.036.2
107.1070.409

3

3

=
⋅−
⋅−=

−
−

=′
−

crspl

crspl

uu
PP

K  MN/m (D.70)

In stadium III, the ultimate state, the beam is a mechanism and for a fixed beam 
plastic hinge are formed at the supports and in the middle of the beam. The ultimate 
force is calculated as: 

4.436
5.2

4.13688
=⋅==

L
M

P pl
pl  kN (D.71)

The relation between the load and displacement is shown graphically in Figure D.6. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 
171

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10

Displacement [mm]

Lo
ad

 [k
N

]

Pcr

Ppl
Pspl

 

Figure D.6 Relation between load and displacement for case(2.1). 

 

D.2.4 Case(2.2) 

In stadium I and II a reinforced concrete beam behaves elastically and the maximum 
moment appears, in this case, at the supports and is calculated as: 

L
MPPLqLM 12

1212

2

=⇔==  (D.72)

The load for which the first crack occurs is then: 

5.161
5.2

64.331212
=⋅==

L
M

P cr
cr  kN (D.73)

The reinforcement in the tensile zone starts to yield when the load is: 

5.613
5.2

8.1271212
=⋅==

L
M

P spl
spl  kN (D.74)

When having elastic response the stiffness K  can be calculated as: 

3

384
L

EIK =  (D.75)

In stadium I the stiffness is: 

3392
5.2

1071.3102.37384384
3

39

3 =⋅⋅⋅⋅==
−

L
IE

K Ic
I  MN/m (D.76)

Just before yielding starts in the reinforcing steel in the tensile zone the stiffness is: 

Plastic hinges
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2
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2 
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7.346
5.2

1079.3102.37384384
3

49

3 =⋅⋅⋅⋅==
−

L
IE

K IIc
II  MN/m (D.77)

The values of the midpoint deflection corresponding to crP  and plP  is calculated as: 

K
Pu =  (D.78)

The midpoint deflection is than for load crP : 

0476.0
103392
105.161

6

3

=
⋅
⋅==

I

cr
cr K

P
u  mm (D.79)

and the midpoint deflection for load splP  is: 

77.1
107.346
105.613

6

3

=
⋅
⋅==

II

spl
spl K

P
u  mm (D.80)

The inclination of the load-displacement curve in between the occurrence of the first 
crack and the ultimate state is calculated as: 

( )
( ) 5.262

100476.077.1
105.1615.613

3

3

=
⋅−
⋅−=

−
−

=′
−

crspl

crspl

uu
PP

K  MN/m (D.81)

In stadium III, the ultimate state, the beam is a mechanism and for a fixed beam 
plastic hinge are formed at the supports and in the middle of the beam. The ultimate 
force is calculated as: 

9.872
5.2

4.1361616
=⋅==

L
M

P pl
pl  kN (D.82)

The relation between the load and displacement is shown graphically in Figure D.7. 
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Figure D.7 Relation between load and displacement for case(2.2). 

 

D.3 Stress-strain relation 

The material properties used as input in ADINA (2004) is the relation between the 
stress and strain why these have to be calculated from the relations between load and 
displacement in Section 7.1.1. It shall be observed that the method used here to 
calculate the stress-strain relation corresponding to the load-displacement relation is 
an approximate method. A static analyses made in ADINA (2004) will probably not 
give a load-displacement curve equal to the one used when calculating the stress-
strain relation. In order to verify that the method used here give useful results a 
comparison between the load-displacement curve used when calculating the stress-
strain relation and the resulting load-displacement curve from a static analyses made 
in ADINA (2004) is made for each case. 

Since the beam used in the FE analysis has a constant cross-section through the whole 
analysis while the cross-section of the reinforced concrete will change the stresses 
corresponding to the crack moment Mcr, moment where yielding starts Mspl and the 
ultimate moment Mpl are calculated as shown in Figure D.8. In the SDOF- and FE 
analysis the cross-section in Figure 7.2 is used and the moment of inertia is: 

3
33

1057.3
12

35.00.1
12

−⋅=⋅=== bhII analysis  m4 (D.83) 
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Figure D.8 Stresses for the cross-section used in the analysis. 
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M planalysis
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Since the value of the ultimate stress σpl is lower than the value of σspl the value of σpl 
is used as the maximum stress in the FE analysis. 

For the reinforced concrete beam the moment of inertia will change as soon as the 
first crack occurs (P=Pcr). The relation between the load and the displacement for a 
simply supported, reinforced concrete beam is principally shown in Figure D.9 and 
the stiffness K1 and K2 are expressed as (according to Samuelsson and Wiberg 
(1999)): 

31 5
384

L
IEK Ic=  (D.87) 
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32 5
384

L
IEK IIc=  (D.88) 

where II and III are equivalent values of the moment of inertia for the reinforced cross-
section, for further information see Section 12.2.1.3. Ec is the modulus of elasticity of 
the concrete. 

crε  

2K  
2E  

E ′  splσ
K ′  plP  

 

u
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splu  cru  

plP  

crP  

1K  
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σ

plε   

crσ  
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Figure D.9 Notations for material properties for load-displacement relation and 
stress-strain relation respectively 

The corresponding stiffness in the SDOF- and FE-analyses (with moment of inertia in 
Equation (D.88)) is: 

3
1

1 5
384

L
IEK analysis =  (D.89) 

3
2

2 5
384

L
IEK analysis =  (D.90) 

The stiffness in the analyses must be equal to the stiffness of the beam and Equation 
(D.87) shall be equal to Equation (D.89) and Equation (D.88) shall be equal to 
Equation (D.90). 

I
IEE

L
IE

L
IE I

c
Ic =⇒= 133

1

5
384

5
384  (D.91) 

I
IEE

L
IE

L
IE II

c
IIc =⇒= 233

2

5
384

5
384  (D.92) 

The moment of inertia in stadium I and II and the modulus of elasticity for the 
reinforced concrete beam is calculated in Appendix D and the modulus of elasticity 
for the analysis can be calculated as: 

6.38
1057.3
1071.3102.37 3

3
9

1 =
⋅
⋅⋅== −

−

I
IEE I

c  GPa (D.93) 
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⋅
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−

I
IEE II

c  GPa (D.94) 

The strains corresponding to crσ  and plσ  is calculated as: 

043.0
106.38
1065.1

9

6

1

=
⋅
⋅===

E
cr

cr
analysis

cr
σεε  ‰ (D.95) 

6.1
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9
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=
⋅
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E
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spl

σ
εε  ‰ (D.96) 

The inclination of the stress-strain curve in between crσ  and plσ  is: 

( )
( ) 99.2

10043.06.1
1065.126.6

3

6

=
⋅−
⋅−=

−
−

=′
−

crspl

crsplE
εε
σσ

 GPa (D.97) 

The strain corresponding to the ultimate stress σpl can be calculated as: 

=
′

−
+==

E
cru

cru
analysis

pl
σσεεε  

( ) 98.0
1099.2

1065.145.410043.0 9

6
3 =

⋅
⋅−+⋅= −  ‰ 

(D.98) 

In Figure D.10 the input stress-strain relation used in ADINA (2004) is shown 
graphically. 
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Figure D.10 Stress-strain relation used as input in FE analysis (ADINA (2004)), in 
figure uσ  represents the value of plσ . 
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The resulting load-displacement relation found in static analyses for each beam and 
loading case are presented in Figure D.11. 

 

Output from static analyses in ADINA Input to SDOF analyses 
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Figure D.11 Relations between load and displacements for SDOF and FE analysis. 

The load-displacement curves used in the FE analysis have a more stiff behaviour 
than the load-displacement curves used in the SDOF analysis. However, the 
approximated values of the stress-strain relation used as input in the FE analysis are 
assumed to be good enough. 
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APPENDIX E Varying number of elements and 
size of modulus of elasticity in FE-
analyses 

In order to confirm that the number of elements used are enough and that the modulus 
of elasticity is high enough in case of ideal plastic material different numbers and 
values are used in the FE-analyses and the results compared. 

In Figure E.1 it can bee seen that in case of linear elastic material it is enough to use 
20 elements since the results are very similar to the results when 50 elements is used. 
20 equally sized 2-node beam elements are thus used when having linear elastic 
material. 
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Figure E.1 Displacement-time curves when modelling beam with different numbers 
of elements for case (1.1), P1=132 kN, t1=1 ms. 

In Figure E.2 it can bee seen that in case of trilinear material it is enough to use 299 
elements in case of concentrated load since the results are the same as the results 
when 199 elements is used. It is hence also assumed that 300 elements are enough in 
case of uniformly distributed load. 
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Figure E.2 Displacement-time curves when having different numbers of elements 
for case (1.1), =1P 4220 kN and 11 =t  ms. 

Due to limitations in ADINA (2004) ideal plastic material can not be modelled but in 
order to imitate the ideal plastic behaviour a very high elastic stiffness is used instead. 
Since the analysis, when having very stiff material, are computationally because very 
small time steps are required in order to have enough convergence for a suitable 
number of iteration, a sufficiently good value of the modulus of elasticity shall be 
found. This is done by comparing results from analyses where different values of the 
modulus of elasticity is used. In Figure E.3 it is seen that when having =E 5000 GPa 
no noticeable vibrations occurs after the maximum value of the displacement is 
reached. This behaviour is wanted since for ideal plastic material there will be no 
vibrations when the maximum value of the displacement is reached, see Figure E.4. 
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Figure E.3 Displacement-time curves when having different values of the modulus 
of elasticity for case (1.1), =1P 4810 kN and 11 =t  ms. 
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Figure E.4 For ideal plastic material (a) no vibrations will occur after the 
maximum value is reached but for elastic-plastic material (b) vibrations 
will occur 

 

R  

u
maxu  

R

u  
maxu  

minu

a) b) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 
181

APPENDIX F Standardized shapes of deflection 
In this Appendix the standardized shapes of deflections in from the FE analyses in are 
shown together with the assumed shape of deformation used in the SDOF analyses. 
Only the cases not shown in Section 7.2.3 are shown here. 
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Figure F.1 Standardized displacement along the beam in a) case (1.1) and b) case 
(1.2) compared to the assumed shape of displacement in the SDOF 
analyses. 
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Figure F.2 Standardized displacement along the beam in a) case (2.1) and b) case 
(2.2) compared to the assumed shape of displacement in the SDOF 
analyses. 

 

F.2 Elastoplastic range 

In the elastoplastic range the assumed shape of deformation in the SDOF analyses is 
not defined. However, it shall be in between the assumed shape in the elastic range 
and the assumed shape in the plastic range. 

a) b) 

a) b) 
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Figure F.3 Standardized displacement along the beam in a) case (1.1) and b) case 
(1.2) compared to the assumed shape of displacement in the SDOF 
analyses. 
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Figure F.4 Standardized displacement along the beam in a) case (1.2) and b) case 
(2.2) compared to the assumed shape of displacement in the SDOF 
analyses. 

 

F.3 Plastic range 
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Figure F.5 Standardized displacement along the beam in a) case (1.2) and b) case 
(2.2) compared to the assumed shape of displacement in the SDOF 
analyses. 
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APPENDIX G Beam equations for linear elastic 
and ideal plastic material 

In this appendix beam equations for case (1.1), (1.2), (2.1) and (2.2), shown in Figure 
6.7, with linear elastic and ideal plastic material are derived. Analytical expressions 
for the maximum value of the deflection for the beams subjected to characteristic 
impulse loads are derived. 

 

G.1 Simply supported beam subjected to concentrated load - 
Case (1.1) 

Beam equations for a simply supported beam subjected to a concentrated load, shown 
in Figure G.1, are here derived for linear elastic and ideal plastic material. 

L  
 

Figure G.1 Simply supported beam subjected to concentrated load. 

 

G.1.1 Linear elastic material 

If the most stressed part of the cross-section is located at the distance z  from the 
neutral layer the maximum value of the moment can, in case of linear elastic material, 
be expressed as: 

z
IM el σ=  (G.1)

where σ is the stress and I is the moment of inertia. 

The maximum value of the moment will appear in the middle of the beam and can in 
case of a simply supported beam be expressed as (brought from elementary cases): 

4
PLM el =  (G.2)

The maximum value of the internal resisting force is equal to the highest value of the 
load. Equations (G.1) and (G.2) gives the expression for the maximum internal 
resisting force in case of linear elastic material: 
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zL
I

L
M

PR el
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σ44
max ===  (G.3)

The expression for the midpoint deflection can be found in elementary cases and is: 

EI
PLu

48

3

=  (G.4)

and the stiffness of the linear elastic beam K is: 

3

48
L
EI

u
PK ==  (G.5)

Using Table 9.1, Equations (G.3), (G.4) and the values of the transformation factors, 
listed in Table 6.1, the equations for the simply supported beam with linear elastic 
material, subjected to a concentrated load can be expressed as: 
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 (G.9)

 

G.1.2 Ideal plastic material 

The maximum value of the moment is the plastic moment, Mpl, and appears in the 
middle of the beam, where a plastic hinge is assumed. In case of a simply supported 
beam subjected to a concentrated load Mpl is (brought from elementary cases): 

4
LP

M pl
pl =  (G.10)

where Ppl is the value of the external load when yielding starts. 

The maximum value of the internal resisting force is equal to the external load for 
which yielding starts and can by means of Equation (G.10) be expressed as: 
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4
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Using Table 9.1, Equations (G.10), (G.11) and the values of the transformation 
factors, listed in Table 6.1, the equations for the simply supported beam with ideal 
plastic material, subjected to a concentrated load can be expressed as: 
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L
MuM

L
MuM

MuRI plpl
mMPKPc

maxmax
max 63.1

4
3
22 ≈== κκ  (G.13)

MM
LI

MM
LI

MR
I

Iu
pl

c

pl

c

mMPKP

c
c

222

max 375.0
4322

)( =
⋅

==
κκ

 (G.14)

 

G.1.3 Summary of beam equations for case (1.1) 

The beam equations derived in Section G.1.1 and G.1.2 are summarised in Table G.1 . 

Table G.1 Beam equations for a simply supported beam subjected to concentrated 
load. 

I. Linear elastic material 

zL
IPc

σ2=  

z
I

EI
MLIc

σ402.0≈  

t

c
c EI

LP
Pu

3

max 0417.0)( ≈  

EIM
LI

Iu c
c

3

max 207.0)( =≈

 

II. Ideal plastic material 

L
M

P pl
c 4=  

L
MuM

I pl
c

max63.1≈  

MM
LI

Iu
pl

c
c

2

max 375.0)( =  
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G.2 Simply supported beam subjected to distributed load - 
Case (1.2) 

Beam equations for a simply supported beam subjected to a uniformly distributed 
load, shown in Figure G.2, are here derived for linear elastic and ideal plastic 
material.  

L
 

Figure G.2 Simply supported beam subjected to uniformly distributed load 

 

G.2.1 Linear elastic material 

If the most stressed part of the cross-section is located at the distance z  from the 
neutral layer the maximum value of the moment can, in case of linear elastic material, 
be expressed as: 

z
IM el σ=  (G.15)

where σ is the stress and I is the moment of inertia. 

The maximum value of the moment will appear in the middle of the beam and can in 
case of a simply supported beam be expressed as (brought from elementary cases): 

8
PLM el =  (G.16)

where P is the value of the external load. 

The maximum value of the internal resisting force is equal to the highest value of the 
load. Equations (G.15) and (G.16) gives the expression for the maximum internal 
resisting force in case of linear elastic material: 

zL
I

L
M

PR el
m

σ88
max ===  (G.17)

The expression for the midpoint deflection can be found in elementary cases and is: 
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EI
PLu

384
5 3

=  (G.18)

and the stiffness of the linear elastic beam K is: 

35
384

L
EI

u
PK ==  (G.19)

Using Table 9.1, Equations (G.17), (G.19) and the values of the transformation 
factors, listed in Table 6.1, the equations for the simply supported beam with linear 
elastic material, subjected to a uniformly distributed load can be expressed as: 

zL
I

zL
IR

P KP
m

KPc
σσκκ 4

2
8

2
===  (G.20)

z
I

EI
ML

EI
ML

zL
I

MK
R

I m
MPKPc

σσκκ 801.0
384
587875.0

3

≈==  (G.21)

EI
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EI
LP

K
P

Pu cc

KP

c
c

33

max 0206.0
384
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)( ≈==
κ

 (G.22)

EIM
LI

EIM
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MK
I

Iu cc

MPKP

c
c

33

max 129.0
3847875.0
5

)( ≈
⋅

==
κκ

 (G.23)

 

G.2.2 Ideal plastic material 

The maximum value of the moment is the plastic moment, plM , and it will appear in 
the middle of the beam, where a plastic hinge is assumed, and can in case of a simply 
supported beam be expressed as (brought from elementary cases): 

8
LP

M pl
pl =  (G.24)

where Ppl is the value of the external load when yielding starts. 

The maximum value of the internal resisting force is equal to the external load for 
which yielding starts and can by means of Equation (G.10) be expressed as: 

L
M

PR pl
plm

8
==  (G.25)

Using Table 9.1, Equations (G.24), (G.25) and the values of the transformation 
factors, listed in Table 6.1, the equations for the simply supported beam with ideal 
plastic material, subjected to a uniformly distributed load can be expressed as: 
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L
M

RP pl
mKPc 8== κ  (G.26)

L
MuM

L
MuM

MuRI plpl
mMPKPc

maxmax
max 27.3

8
3
42 ≈== κκ  (G.27)
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 (G.28)

 

G.2.3 Summary of beam equations for case (1.2) 

The beam equations derived in Section G.2.1 and G.2.2 are summarised in Table G.2 
below. 

Table G.2 Beam equations for a simply supported beam subjected to uniformly 
distributed load. 

I. Linear elastic material 

zL
IPc

σ4=  

z
I

EI
MLIc

σ810.0≈  

EI
LP

Pu c
c

3

max 0260.0)( ≈  

EIM
LI

Iu c
c

3

max 129.0)( ≈  

 

 

II. Ideal plastic material 

L
M

P pl
c 8=  

L
MuM

I pl
c

max27.3≈  

MM
LI

Iu
pl

c
c

2

max 0938.0)( =
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G.3 Fixed beam subjected to concentrated load - Case (2.1) 

Beam equations for a beam fixed in both ends subjected to a concentrated load, shown 
in Figure G.3, are here derived for linear elastic and ideal plastic material. 

L
 

Figure G.3 Fixed beam subjected to concentrated load 

 

G.3.1 Linear elastic material 

If the most stressed part of the cross-section is located at the distance z  from the 
neutral layer the maximum value of the moment can, in case of linear elastic material, 
be expressed as: 

z
IM el σ=  (G.29)

where σ is the stress and I is the moment of inertia. 

The maximum value of the moment will appear in the middle of the beam and at the 
supports and can in case of a beam, fixed in both ends, be expressed as (brought from 
elementary cases): 

8
PLM el =  (G.30)

where P is the value of the external load. 

The maximum value of the internal resisting force is equal to the highest value of the 
load. Using this statement together with Equations (G.29) and (G.30) gives the 
expression for the maximum internal resisting force in case of linear elastic material: 

zL
I

L
M

PR el
m

σ88
max ===  (G.31)

The expression for the midpoint deflection can be found in elementary cases and is: 

EI
PLu

192

3

=  (G.32)

and the stiffness of the linear elastic beam K is: 
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3

192
L

EI
u
PK ==  (G.33)

Using Table 9.1, Equations (G.31), (G.33) and the values of the transformation 
factors, listed in Table 6.1, the equations for the beam fixed in both ends with linear 
elastic material, subjected to a concentrated load can be expressed as: 

zL
I

zL
IR

P t
KP

m
KPc

σσκκ 4
2
8

2
===  (G.34)
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Iu cc

MPKP
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max 118.0
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)( ≈
⋅

==
κκ

 (G.37)

 

G.3.2 Ideal plastic material 

The maximum value of the moment is the plastic moment, Mpl, and it will appear in 
the middle of the beam and at the supports, where plastic hinges are assumed if it is 
assumed that the field moment equals the support moments. Mpl is in case of a beam, 
fixed in both ends, be expressed as (brought from elementary cases): 

8
LP

M pl
pl =  (G.38)

where Ppl is the value of the external load when yielding starts. 

The maximum value of the internal resisting force is equal to the external load for 
which yielding starts and can by means of Equation (G.38) be expressed as: 

L
M

PR pl
plm

8
==  (G.39)

Using Table 9.1, Equations (G.38), (G.39) and the values of the transformation 
factors, listed in Table 6.1, the values for the beam fixed in both ends with ideal 
plastic material, subjected to a concentrated load can be expressed as: 

L
M

RP pl
mKPc 8== κ  (G.40)
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L
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22 ≈== κκ  (G.41)
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 (G.42)

 

G.3.3 Summary of beam equations for case (2.1) 

The beam equations derived in Section G.3.1 and G.3.2 are summarised in Table G.3 
below. 

Table G.3 Beam equations for fixed beam subjected to concentrated load. 

I. Linear elastic material 

zL
IPc

σ4=  

zE
IMLIc

σ352.0≈  

EI
LP

Pu c
c

3

max 0104.0)( ≈  

EIM
LI

Iu c
c

3

max 118.0)( ≈  

 

 

II. Ideal plastic material 

L
M

P pl
c 8=  

L
MuM

I pl
c

max31.2≈  

MM
LI

Iu
pl

c
c

2

max 188.0)( ≈

 

 

 

G.4 Fixed beam subjected to distributed load - Case (2.2) 

Beam equations for beam, fixed in both ends, subjected to a uniformly distributed 
load, shown in Figure G.4, are here derived for linear elastic and ideal plastic 
material. 
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L
 

Figure G.4 Fixed beam subjected to uniformly distributed load 

 

G.4.1 Linear elastic material 

If the most stressed part of the cross-section is located at the distance z  from the 
neutral layer the maximum value of the moment can, in case of linear elastic material, 
be expressed as: 

z
IM el σ=  (G.43)

where σ is the stress and I is the moment of inertia. 

The maximum value of the moment will appear at the supports and can in case of a 
beam, fixed in both ends, be expressed as (brought from elementary cases): 

12
PLM el =  (G.44)

where P is the value of the external load. 

The maximum value of the internal resisting force is equal to the highest value of the 
load. Using this statement together with Equations (G.43) and (G.44) gives the 
expression for the maximum internal resisting force in case of linear elastic material: 

zL
I

L
M

PR el
m

σ1212
max ===  (G.45)

The expression for the midpoint deflection can be found in elementary cases and is: 

EI
PLu

384

3

=  (G.46)

and the stiffness of the linear elastic beam K is: 

3

384
L

EI
u
PK ==  (G.47)
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Using Table 9.1, Equations (G.45), (G.47) and the values of the transformation 
factors, listed in Table 6.1, the equations for the beam, fixed in both ends, with linear 
elastic material, subjected to a uniformly distributed load can be expressed as: 
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I
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IR
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m
KPc
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 (G.51)

 

G.4.2 Ideal plastic material 

The maximum value of the moment is the plastic moment, Mpl, and it will appear in 
the middle of the beam and at the supports, where a plastic hinges are assumed, and 
can in case of a beam, fixed in both ends, be expressed as (brought from elementary 
cases): 

16
LP

M pl
pl =  (G.52)

where Ppl is the value of the external load when yielding starts. 

The maximum value of the internal resisting force is equal to the external load for 
which yielding starts and can by means of Equation (G.52) be expressed as: 

L
M

PR pl
plm

16
==  (G.53)

Using Table 9.1, Equations (G.52), (G.53) and the values of the transformation 
factors, listed in Table 6.1, the equations for the beam, fixed in both ends, with ideal 
plastic material, subjected to a uniformly distributed load can be expressed as: 

L
M

RP pl
mKPc 16== κ  (G.54)
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G.4.3 Summary of beam equations for case (2.2) 

The beam equations derived in Section G.4.1 and G.4.2 are summarised in Table G.4. 

Table G.4 Beam equations for fixed beam subjected to uniformly distributed load. 

I. Linear elastic material 

zL
IPc

σ6=  

z
I

EI
MLIc
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Pu c
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3
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II. Ideal plastic material 
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APPENDIX H Tables of damage 
In case of linear elastic material the relation between the impulse load factor Iγ  and 
pressure load factor Pγ , calculated as in Section 11.1.1, is shown in Table H.1. 
Observe that some of the values also are shown in Table 11.1. 

Table H.1 Relation between Pγ  and Iγ  for linear elastic material. 

cI II=γ  cP PP1=γ  

c
P P

P1=γ  
n =0 n =1 n =2 c

I I
I=γ  

n =0 n =1 n =2 

1.01 1.444 41.13 64.15 1.01 4.144 6.813 8.525 

1.05 1.324 8.491 11.17 1.05 1.959 3.177 3.911 

1.1 1.255 4.570 5.931 1.1 1.469 2.389 2.924 

1.3 1.141 1.984 2.455 1.3 1.066 1.691 1.984 

1.5 1.095 1.490 1.776 1.5 1.003 1.493 1.694 

1.6 1.080 1.373 1.610 1.6 1.000 1.434 1.607 

1.7 1.069 1.294 1.494 1.7 1.000 1.388 1.541 

1.8 1.060 1.237 1.408 1.8 1.000 1.351 1.488 

1.9 1.053 1.196 1.343 1.9 1.000 1.321 1.445 

2.0 1.047 1.166 1.293 2.0 1.000 1.296 1.409 

2.2 1.038 1.126 1.220 2.2 1.000 1.256 1.353 

2.4 1.032 1.099 1.171 2.4 1.000 1.226 1.310 

2.6 1.026 1.080 1.137 2.6 1.000 1.202 1.277 

2.8 1.023 1.067 1.112 2.8 1.000 1.183 1.250 

3 1.020 1.057 1.094 3 1.000 1.167 1.228 

3.5 1.014 1.040 1.064 3.5 1.000 1.138 1.187 

4 1.011 1.030 1.047 4 1.000 1.117 1.159 

4.5 1.008 1.023 1.037 4.5 1.000 1.102 1.138 

5 1.007 1.019 1.029 5 1.000 1.090 1.122 

6 1.005 1.013 1.020 6 1.000 1.073 1.099 

7 1.003 1.009 1.015 7 1.000 1.062 1.083 

8 1.003 1.007 1.011 8 1.000 1.053 1.072 
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cI II=γ  cP PP1=γ  

c
P P

P1=γ  
n =0 n =1 n =2 c

I I
I=γ  

n =0 n =1 n =2 

9 1.002 1.006 1.009 9 1.000 1.047 1.063 

10 1.002 1.005 1.007 10 1.000 1.042 1.056 

20 1.000 1.001 1.002 20 1.000 1.020 1.028 

30 1.000 1.000 1.001 30 1.000 1.014 1.019 

40 1.000 1.000 1.000 40 1.000 1.010 1.014 

50 1.000 1.000 1.000 50 1.000 1.008 1.015 

100 1.000 1.000 1.000 100 1.000 1.005 1.013 

 

In case of ideal plastic material the relation between the impulse load factor Iγ  and 
pressure load factor Pγ , calculated as in Section 11.1.2, is shown in Table H.2 

Table H.2 Relation between Pγ  and Iγ  for ideal plastic material. 

cI II=γ  cP PP=γ  

c
P P

P1=γ  
n =0 n =1 n =2 c

I I
I=γ  

n =0 n =1 n =2 

1.01 10.05 441.8 587.5 1.01 50.73 67.67 76.13 

1.05 4.583 42.87 56.25 1.05 10.76 14.34 16.14 

1.1 3.317 16.571 21.58 1.1 5.763 7.688 8.645 

1.3 2.082 4.454 5.569 1.3 2.452 3.269 3.678 

1.5 1.732 2.756 3.330 1.5 1.800 2.400 2.700 

1.6 1.633 2.385 2.839 1.6 1.641 2.188 2.459 

1.7 1.558 2.137 2.508 1.7 1.529 2.039 2.286 

1.8 1.500 1.961 2.270 1.8 1.446 1.929 2.154 

1.9 1.453 1.831 2.094 1.9 1.383 1.8433 2.050 

2.0 1.414 1.732 1.957 2.0 1.333 1.775 1.966 

2.2 1.354 1.593 1.762 2.2 1.260 1.671 1.837 

2.4 1.309 1.500 1.631 2.4 1.210 1.595 1.742 

2.6 1.275 1.433 1.537 2.6 1.174 1.537 1.668 
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cI II=γ  cP PP=γ  

c
P P

P1=γ  
n =0 n =1 n =2 c

I I
I=γ  

n =0 n =1 n =2 

2.8 1.247 1.382 1.468 2.8 1.146 1.491 1.610 

3 1.225 1.342 1.414 3 1.125 1.453 1.562 

3.5 1.183 1.272 1.324 3.5 1.089 1.382 1.474 

4 1.155 1.225 1.266 4 1.067 1.333 1.412 

4.5 1.134 1.193 1.225 4.5 1.052 1.297 1.367 

5 1.118 1.168 1.196 5 1.042 1.269 1.332 

6 1.095 1.134 1.155 6 1.029 1.228 1.280 

7 1.080 1.111 1.128 7 1.021 1.199 1.245 

8 1.069 1.095 1.110 8 1.016 1.178 1.218 

9 1.061 1.084 1.095 9 1.013 1.162 1.198 

10 1.054 1.074 1.085 10 1.010 1.148 1.182 

20 1.026 1.035 1.040 20 1.003 1.087 1.106 

30 1.017 1.023 1.026 30 1.001 1.064 1.079 

40 1.013 1.017 1.019 40 1.001 1.052 1.064 

50 1.010 1.014 1.015 50 1.004 1.045 1.055 

100 1.005 1.001 1.007 100 1.001 1.028 1.034 
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APPENDIX I  Calculations to example 
When analysing cross-section in Chapter 7 a reinforced concrete cross-section with a 
chosen value of the amount of reinforcement ρ=0.335% where used. Here the 
minimum reinforcement du to the Swedish shelter regulations, see Räddningsverket 
(2003) is used. Since only the amount of reinforcement is changed the material 
properties are the same as used in Appendix D, where the beams used in Chapter 7 are 
analysed. 

I.1 Moment capacity and load-displacement relation 

An estimated value of the required steel area in the tensile zone, according to 
Engström (2001) is calculated as: 

df
MA

st
s 9.0⋅

=  (I.1) 

where fst is the yield stress in steel, 0.9d is an estimated value of the internal level arm 
and M is the maximum moment in the beam, which, in case of a uniformly distributed 
load applied on a fixed beam can be calculated as: 

82

2

⋅
= qLM  (I.2) 

provided that it is assumed that the support moment Ms equals the moment in the 
midpoint Mf. 

The estimated value of the required steel area in the tensile zone can now be 
calculated as: 

160
3.09.01045082

5.21050
9.082 6

232

=
⋅⋅⋅⋅⋅

⋅⋅=
⋅⋅⋅

=
df

qLA
st

s  mm2 (I.3) 

The minimum required amount of reinforcement is 0.14%, due to the Swedish shelter 
regulations, Räddningsverket (2003): 

222
min, mm4203.00.11014.01014.0

%14.0

=⋅⋅⋅=⋅⋅⋅=⇒

≥
⋅

=

−− dbA
db

A

s

sρ

 

(I.4
) 

In order to have even values of reinforcing steel 15010 sφ is used, the total area of 
reinforcement per meter is than: 

524=sA  mm2/m (I.5) 
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The same amount of reinforcement is assumed in the compression zone. 

524==′ ss AA  mm2/m (I.6) 

The beam capacity is calculated in the same way as when analysing the beams used in 
Chapter 7, see Appendix D, and since the calculations is very similar only calculated 
values of interest are shown here, when analysing the beam used in Section 11.4.2. 

 

I.1.1 Stadium I 

The equivalent area for the cross-section in stadium I is: 

355.0=IA  mm2 (I.7) 

and the moment of inertia for stadium I is: 

31064.3 −⋅=II  mm4 (I.8) 

The moment when the first crack occurs in the beam is: 

1.33=crM  kNm (I.9) 

For a fixed beam subjected to a uniformly distributed load the value of the load 
corresponding to the crack moment Mcr is (qcr=Pcr/L): 

6.158
5.2

101.331212 3

=⋅⋅==
L
M

P cr
cr  kN (I.10) 

The stiffness in the elastic range is: 

0.3332=IK  MN/m (I.11) 

and the midpoint deflection of the beam when the first crack occurs is: 

0476.0=cru  mm (I.12) 

 

I.1.2 Stadium II 

The equivalent area for the cross-section in stadium II is: 

0441.0=IIA  mm2 (I.13) 

and the moment of inertia for stadium II is: 

41012.2 −⋅=III  mm4 (I.14) 
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The moment when yielding starts in the steel is: 

0.68=splM  kNm (I.15) 

For a fixed beam subjected to a uniformly distributed load the value of the load 
corresponding to the moment when yielding starts Mspl is (qspl=Pspl/L): 

3.326
5.2

100.681212 3

=⋅⋅==
L
M

P spl
spl  kN (I.16) 

The stiffness, just before yielding starts, is: 

8.193=IIK  MN/m (I.17) 

and the midpoint deflection when yielding starts is: 

68.1=splu  mm (I.18) 

The inclination of the load-displacement curve in between the occurrence of the first 
crack and the ultimate state is: 

7.102=′K  MN/m (I.19) 

 

I.1.3 Stadium III 

The height of the compression zone in stadium III is: 

0288.0=x  m (I.20) 

and the ultimate moment is: 

5.78=plM  kNm (I.21) 

For a fixed beam subjected to a uniformly distributed load the value of the load 
corresponding to the ultimate moment Mpl is (qpl=Ppl/L): 

4.502
5.2

105.781616 3

=⋅⋅==
L
M

P pl
pl  kN (I.22) 

The inclination of the load-displacement curve K' is used up to the load Ppl and the 
deflection for load Ppl is: 

40.3=plu  mm (I.23) 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 
 
201

I.2 Rotational capacity 

The rotational capacity of a fixed beam subjected to a uniformly distributed load is 
calculated as in Section 12.2.2.3. Since no shear reinforcement is used ωv is zero sω′  
is calculated as in Equations (12.45) and (12.46) where 524=′sA  mm2, 

== stsc ff  450 MPa, 3.0=d  m, 0.1== bbc  m and 22=ccf  MPa.  

03573.0
10223.00.1

1045010524
6

66

=
⋅⋅⋅

⋅⋅⋅=
⋅⋅

⋅′
=′

−

ccc

sts
s fdb

fAω  (I.24) 

sω  is calculated as in Equation (12.46) where 524=sA  mm2, 450=stf  MPa, 
3.0=d  m, 0.1== bbc  and 22=ccf  MPa. 

03573.0
10223.00.1

1045010524
6

66

=

=′=
⋅⋅⋅

⋅⋅⋅=
⋅⋅

⋅
=

−

s
ccc

sts
s fdb

fA ωω
 (I.25) 

Since ωs must be larger than or equal to 0.05 ωs=0.05 is used. 

balω  is calculated as in Equation (12.47) where 450=stf  MPa and 200=sE  GPa. 

( ) ( )sbal ωω >=
⋅+⋅

⋅= −

−

4870.0
10200450105.3

105.38.0 33

3

 (I.26) 

Factor A  is then: 

9413.0
4870.0

05.04.105.07.11

4.17.16.01

=−⋅+=

=−′++=
bal

s
svA

ω
ωωω

 (I.27) 

The use of not weld able, hot rolled reinforcement gives that the factor B  is equal to 
0.8 and 7.17530.09413.08.0 <=⋅=⋅ BA . 

8.0=B  (I.28) 

In Fel! Hittar inte referenskälla. the moment distribution in the beam is shown when 
the mechanism is about to form and an expression for the distance supportl ,0  from the 
support to the location where the moment is zero is derived. 
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Figure I.1 Moment distribution in beam subjected to uniformly distributed load 
when mechanism is about to form ( plqq = ) and derivation of distance 

supportl ,0 . 

Factor C , calculated as in Equations (12.51) and (12.52), depends on the location of 
the plastic hinge and the distance supportl ,0  is: 

366.05.214645.014645.0,0 =⋅=⋅= Ll support  m (I.29) 

The distance fieldl ,0  is: 
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884.05.214645.0
2
5.2

2 sup,0,0 =⋅−=−= portfieldt lLl  m (I.30) 

Factor C  for the support and field are then: 

20.123.0366.01010 ,0 =⋅=⋅= dlC supportsupport  (I.31)

63.203.0884.077 ,0 =⋅=⋅= dlC fieldfield  (I.32)

Insert Equations (I.40), (I.41), (I.44) and (I.45) into Equation (12.42) and the available 
rotational capacities for the plastic hinges are calculated: 

0092.01020.128.09413.0 3
,, =⋅⋅⋅= −
supportpldθ  rad (I.33) 

0155.01063.208.09413.0 3
,, =⋅⋅⋅= −
fieldpldθ  rad (I.34) 

The required rotational capacity is calculated as shown is Section 12.2.2.3. 

By means of Equations (12.62) and (12.53) the required plastic rotation capacity can 
be calculated. Mel in Equations (12.62) corresponds here to the moment where 
yielding starts in the reinforcing steel, see Equation (I.15).. 

=−=
IIc

spls
supportpl IE

LM
L
u

16
2

,θ  

=
⋅⋅⋅⋅

⋅⋅−⋅⋅= −

−

49

33

1012.2102.3716
5.2100.68

5.2
100.312

0.0235 rad 

(I.35) 

0470.00235.022, =⋅=⋅= pl,supportfieldpl θθ  rad (I.36) 

 

I.3 Rotational capacity for beam analysed in Appendix D 

Since the same cross-section used in this example also where used when comparing 
the SDOF analyses with FE analyses in Chapter 7 the analysis of the beam capacity is 
found in Appendix D, see case (2.2). 

The rotational capacity is calculated in the same way as in Appendix I.2 therefore 
only some interesting values and the results are shown here. 

1005=′sA  mm2, == stsc ff  450 MPa, 3.0=d  m, 0.1== bbc  m and 22=ccf  MPa.  

06852.0
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( )05.006852.0
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10450101005
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>=
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⋅⋅⋅=
⋅⋅

⋅
=

−

s
ccc

sts
s fdb

fA ωω
 (I.38) 

( ) ( )sbal ωω >=
⋅+⋅

⋅= −

−

4870.0
10200450105.3

105.38.0 33

3

 (I.39)

Factor A  is then: 

9195.0
4870.0
06852.04.106852.07.11

4.17.16.01

=−⋅+=

=−′++=
bal

s
svA

ω
ωωω

 (I.40) 

The use of not weld able, hot rolled reinforcement gives that the factor B  is equal to 
0.8 and 7.174.09195.08.0 <=⋅=⋅ BA . 

8.0=B  (I.41) 

Factor C , calculated as in Equations (12.51) and (12.52), depends on the location of 
the plastic hinge and the distance supportl ,0 , as in Appendix I.2, is: 

366.05.214645.014645.0,0 =⋅=⋅= Ll support  m (I.42) 

The distance fieldl ,0 , as in Appendix I.2, is: 

884.05.214645.0
2
5.2

2 sup,0,0 =⋅−=−= portfieldt lLl  m (I.43) 

Factor C  for the support and field are then: 

20.123.0366.01010 ,0 =⋅=⋅= dlC supportsupport  (I.44)

63.203.0884.077 ,0 =⋅=⋅= dlC fieldfield  (I.45) 

Insert Equations (I.40), (I.41), (I.44) and (I.45) into Equation (12.42) and the available 
rotational capacities for the plastic hinges are calculated: 

0090.01020.128.09195.0 3
,, =⋅⋅⋅= −
supportpldθ  rad (I.46) 

0157.01063.208.09195.0 3
,, =⋅⋅⋅= −
fieldpldθ  rad (I.47) 

The required rotational capacity is calculated as shown is Section 12.2.2.3. 
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By means of Equations (12.62) and (12.53) the required plastic rotation capacity can 
be calculated. Mel in Equations (12.62) corresponds here to the moment where 
yielding starts in the reinforcing steel, see Equation (D.26). 

=−=
IIc

spls
supportpl IE

LM
L
u

16
2

,θ  

=
⋅⋅⋅⋅

⋅⋅−⋅⋅= −

−

49

33

1079.3102.3716
5.2108.127

5.2
103.182 0.0132 rad 

(I.48) 

0264.00132.022, =⋅=⋅= pl,supportfieldpl θθ  rad (I.49) 

 


